# FUNDAMENTALS OF ENGINEERING Supplied-Reference Handbook 

Seventh Edition

This document may be downloaded from the NCEES Web site, but it may not be reproduced without the express written permission of NCEES.

## FUNDAMENTALS OF ENGINEERING Supplied-Reference Handbook

Seventh Edition

Published by the

## National Council of Examiners for Engineering and Surveying ${ }^{\circledR}$

280 Seneca Creek Road, Clemson, SC 29631 800-250-3196 www.ncees.org
©2005 by the National Council of Examiners for Engineering and Surveying ${ }^{\circledR}$. All rights reserved.

ISBN 1-932613-19-6

Printed in the United States of America
May 2005

## PREFACE

The Fundamentals of Engineering (FE) Supplied-Reference Handbook is the only reference material allowed in the FE examination. Many examinees find that it is helpful to review this book before exam day to become familiar with the reference material it contains. If you have purchased or downloaded the Reference Handbook before the examination, you will not be allowed to take it with you into the exam room. Instead, the examination proctor will issue a new copy to each examinee shortly before testing begins. During the exam, you are allowed to write only on your answer sheet and in your exam book; you may not write in the Reference Handbook since it is often retained by universities and used for study purposes.

The Reference Handbook contains only reference formulas and tables; it does not contain sample examination questions. Many commercially available books contain worked examples and sample questions to help you prepare for the examination. NCEES provides sample questions and solutions in various formats to help you become familiar with the types of exam questions and the level of difficulty of the examination.

The Reference Handbook is not designed to assist in all parts of the FE examination. For example, some of the basic theories, conversion, formulas, and definitions that examinees are expected to know are not included. Special material required for the solution of a particular examination question will be included in the question statement itself.

In no event will NCEES be liable for not providing reference material to support all the questions in the FE examination. In the interest of constant improvement, NCEES reserves the right to revise and update the FE Supplied-Reference Handbook as it deems appropriate without informing interested parties. Each NCEES FE examination will be administered using the latest version of the FE Supplied-Reference Handbook.

To report suspected errata for this book, please e-mail your correction using our online feedback form. Errata will be posted on our Web site. Examinees are not penalized for any errors in the Reference Handbook that affect an examination question.

## UpDates to Examination Information

For current exam specifications, study materials and errata, a list of calculators that may be used at the exam, guidelines for requesting special testing accommodations, and other information about exams and licensure, visit the NCEES Web site at www.ncees.org or call us at 800-250-3196.

## Contents

Units ..... 1
Conversion Factors ..... 2
Mathematics ..... 3
Engineering Probability and Statistics ..... 15
Statics ..... 24
Dynamics ..... 29
Mechanics of Materials. ..... 38
Fluid Mechanics ..... 44
Thermodynamics ..... 56
Heat Transfer ..... 67
Transport Phenomena ..... 73
Biology ..... 74
Chemistry ..... 78
Materials Science/Structure of Matter ..... 82
Measurement and Controls ..... 87
Computer Spreadsheets. ..... 91
Engineering Economics ..... 92
Ethics ..... 99
Chemical Engineering. ..... 101
Civil Engineering ..... 111
Environmental Engineering ..... 143
Electrical and Computer Engineering ..... 167
Industrial Engineering. ..... 189
Mechanical Engineering ..... 203
Index ..... 219
School/Institution Codes ..... 226

## UNITS

This handbook uses the metric system of units. Ultimately, the FE examination will be entirely metric. However, currently some of the problems use both metric and U.S. Customary System (USCS). In the USCS system of units, both force and mass are called pounds. Therefore, one must distinguish the pound-force (lbf) from the pound-mass (lbm).
The pound-force is that force which accelerates one pound-mass at $32.174 \mathrm{ft} / \mathrm{s}^{2}$. Thus, $1 \mathrm{lbf}=32.174 \mathrm{lbm}-\mathrm{ft} / \mathrm{s}^{2}$. The expression $32.174 \mathrm{lbm}-\mathrm{ft} /\left(\mathrm{lbf}-\mathrm{s}^{2}\right)$ is designated as $g_{\mathrm{c}}$ and is used to resolve expressions involving both mass and force expressed as pounds. For instance, in writing Newton's second law, the equation would be written as $F=m a / g_{\mathrm{c}}$, where $F$ is in lbf, $m$ in lbm , and $a$ is in $\mathrm{ft} / \mathrm{s}^{2}$.
Similar expressions exist for other quantities. Kinetic Energy: $K E=m v^{2} / 2 g_{\mathrm{c}}$, with $K E$ in ( $\mathrm{ft}-\mathrm{lbf}$ ); Potential Energy: $P E=m g h / g_{\mathrm{c}}$, with $P E$ in ( $\mathrm{ft}-\mathrm{lbf}$ ); Fluid Pressure: $p=\rho g h / g_{\mathrm{c}}$, with $p$ in $\left(\mathrm{lbf} / \mathrm{ft}^{2}\right)$; Specific Weight: $S W=\rho g / g_{\mathrm{c}}$, in $\left(\mathrm{lbf} / \mathrm{ft}^{3}\right)$; Shear Stress: $\tau=$ $\left(\mu / g_{c}\right)(d v / d y)$, with shear stress in $\left(\mathrm{lbf} / \mathrm{ft}^{2}\right)$. In all these examples, $g_{c}$ should be regarded as a unit conversion factor. It is frequently not written explicitly in engineering equations. However, its use is required to produce a consistent set of units.
Note that the conversion factor $g_{c}\left[1 \mathrm{bm}-\mathrm{ft} /\left(\mathrm{lbf}-\mathrm{s}^{2}\right)\right]$ should not be confused with the local acceleration of gravity $g$, which has different units ( $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{ft} / \mathrm{s}^{2}$ ) and may be either its standard value $\left(9.807 \mathrm{~m} / \mathrm{s}^{2}\right.$ or $\left.32.174 \mathrm{ft} / \mathrm{s}^{2}\right)$ or some other local value.
If the problem is presented in USCS units, it may be necessary to use the constant $g_{c}$ in the equation to have a consistent set of units.

| METRIC PREFIXES |  |  | COMMONLY USED EQUIVALENTS |
| :---: | :---: | :---: | :---: |
| Multiple | Prefix | Symbol |  |
| $10^{-18}$ | atto | a | 1 gallon of water weighs 8.34 lbf |
| $10^{-15}$ | femto | f | 1 cubic foot of water weighs $\quad 62.4 \mathrm{lbf}$ |
| $10^{-12}$ | pico | p | 1 cubic inch of mercury weighs 0.491 lbf |
| $10^{-9}$ | nano | n | The mass of one cubic meter of water is 1,000 kilograms |
| $10^{-6}$ | micro | $\mu$ |  |
| $10^{-3}$ | milli | m |  |
| $10^{-2}$ | centi | c | TEMPERATURE CONVERSIONS |
| $10^{-1}$ | deci | d | ${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$ |
| $10^{1}$ | deka | da | ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$ |
| $10^{2}$ | hecto | h | ${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.69$ |
| $10^{3}$ | kilo | k | $K={ }^{\circ} \mathrm{C}+273.15$ |
| $10^{6}$ | mega | M | $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$ |
| $10^{9}$ | giga | G |  |
| $10^{12}$ | tera | T |  |
| $10^{15}$ | peta | P |  |
| $10^{18}$ | exa | E |  |

## FUNDAMENTAL CONSTANTS

Quantity
electron charge
Faraday constant
gas constant
gas constant
gas constant
gravitation - newtonian constant
gravitation - newtonian constant
gravity acceleration (standard)
gravity acceleration (standard)
molar volume (ideal gas), $T=273.15 \mathrm{~K}, p=101.3 \mathrm{kPa}$
speed of light in vacuum
Stephan-Boltzmann constant

Symbol
$e$
metric
metric
USCS
metric USCS
3 kPa

| Symbol | Value | Units |
| :---: | :---: | :---: |
| $e$ | $1.6022 \times 10^{-19}$ | C (coulombs) |
| $\mathcal{F}$ | 96,485 | coulombs/(mol) |
| $\bar{R}$ | 8,314 | $\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$ |
| $\bar{R}$ | 8.314 | $\mathrm{kPa} \cdot \mathrm{m}^{3} /(\mathrm{kmol} \cdot \mathrm{K})$ |
| $\bar{R}$ | 1,545 | $\mathrm{ft}-\mathrm{lbf} /\left(\mathrm{lb}\right.$ mole- ${ }^{\circ} \mathrm{R}$ ) |
| $\bar{R}$ | 0.08206 | L-atm/mole-K |
| $G$ | $6.673 \times 10^{-11}$ | $\mathrm{m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$ |
| G | $6.673 \times 10^{-11}$ | $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}$ |
| $g$ | 9.807 | $\mathrm{m} / \mathrm{s}^{2}$ |
| $g$ | 32.174 | $\mathrm{ft} / \mathrm{s}^{2}$ |
| $V_{\mathrm{m}}$ | 22,414 | L/kmol |
| $c$ | 299,792,000 | $\mathrm{m} / \mathrm{s}$ |
| $\sigma$ | $5.67 \times 10^{-8}$ | $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)$ |


| CONVERSION FACTORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Multiply | By | To Obtain | Multiply | By | To Obtain |
| acre | 43,560 | square feet ( $\mathrm{ft}^{2}$ ) | joule (J) | $9.478 \times 10^{-4}$ | Btu |
| ampere-hr (A-hr) | 3,600 | coulomb (C) | J | 0.7376 | $\mathrm{ft}-\mathrm{lbf}$ |
| ångström ( $\AA$ ) | $1 \times 10^{-10}$ | meter (m) | J | 1 | newton $\cdot \mathrm{m}(\mathrm{N} \cdot \mathrm{m})$ |
| atmosphere (atm) | 76.0 | cm, mercury (Hg) | J/s | 1 | watt (W) |
| atm, std | 29.92 | in, mercury ( Hg ) |  |  |  |
| atm, std | 14.70 | $\mathrm{lbf} / \mathrm{in}^{2}$ abs (psia) | kilogram (kg) | 2.205 | pound (lbm) |
| atm, std | 33.90 | ft , water | kgf | 9.8066 | newton (N) |
| atm, std | $1.013 \times 10^{5}$ | pascal (Pa) | kilometer (km) | 3,281 | feet (ft) |
|  |  |  | km/hr | 0.621 | mph |
| bar | $1 \times 10^{5}$ | Pa | kilopascal (kPa) | 0.145 | $\mathrm{lbf} / \mathrm{in}^{2}$ (psi) |
| barrels-oil | 42 | gallons-oil | kilowatt (kW) | 1.341 | horsepower (hp) |
| Btu | 1,055 | joule (J) | kW | 3,413 | Btu/hr |
| Btu | $2.928 \times 10^{-4}$ | kilowatt-hr (kWh) | kW | 737.6 | (ft-lbf)/sec |
| Btu | 778 | $\mathrm{ft}-\mathrm{lbf}$ | kW-hour (kWh) | 3,413 | Btu |
| Btu/hr | $3.930 \times 10^{-4}$ | horsepower (hp) | kWh | 1.341 | hp-hr |
| Btu/hr | 0.293 | watt (W) | kWh | $3.6 \times 10^{6}$ | joule (J) |
| Btu/hr | 0.216 | ft -lbf/sec | kip (K) | 1,000 | lbf |
|  |  |  | K | 4,448 | newton (N) |
| calorie (g-cal) | $3.968 \times 10^{-3}$ | Btu |  |  |  |
| cal | $1.560 \times 10^{-6}$ | hp-hr | liter (L) | 61.02 | $\mathrm{in}^{3}$ |
| cal | 4.186 | joule (J) | L | 0.264 | gal (US Liq) |
| $\mathrm{cal} / \mathrm{sec}$ | 4.186 | watt (W) | L | $10^{-3}$ | $\mathrm{m}^{3}$ |
| centimeter (cm) | $3.281 \times 10^{-2}$ | foot (ft) | L/second (L/s) | 2.119 | $\mathrm{ft}^{3} / \mathrm{min}$ (cfm) |
| cm | 0.394 | inch (in) | L/s | 15.85 | gal (US)/min (gpm) |
| centipoise (cP) | 0.001 | pascal $\cdot \mathrm{sec}(\mathrm{Pa} \cdot \mathrm{s})$ |  |  |  |
| centistokes (cSt) | $1 \times 10^{-6}$ | $\mathrm{m}^{2} / \mathrm{sec}\left(\mathrm{m}^{2} / \mathrm{s}\right)$ | meter (m) | 3.281 | feet (ft) |
| cubic feet/second (cfs) | 0.646317 | million gallons/day (mgd) | m | 1.094 | yard |
| cubic foot ( $\mathrm{ft}^{3}$ ) | 7.481 | gallon | metric ton | 1,000 | kilogram (kg) |
| cubic meters ( $\mathrm{m}^{3}$ ) | 1,000 | Liters | $\mathrm{m} /$ second ( $\mathrm{m} / \mathrm{s}$ ) | 196.8 | feet/min (ft/min) |
| electronvolt (eV) | $1.602 \times 10^{-19}$ | joule (J) | mile (statute) | 5,280 | feet (ft) |
|  |  |  | mile (statute) | 1.609 | kilometer (km) |
| foot (ft) | 30.48 | cm | mile/hour (mph) | 88.0 | $\mathrm{ft} / \mathrm{min}$ (fpm) |
| ft | 0.3048 | meter (m) | mph | 1.609 | km/h |
| ft pound (ft-lbf) | $1.285 \times 10^{-3}$ | Btu | mm of Hg | $1.316 \times 10^{-3}$ | atm |
| ft -lbf | $3.766 \times 10^{-7}$ | kilowatt-hr (kWh) | mm of $\mathrm{H}_{2} \mathrm{O}$ | $9.678 \times 10^{-5}$ | atm |
| $\mathrm{ft}-\mathrm{lbf}$ | 0.324 | calorie (g-cal) |  |  |  |
| $\mathrm{ft}-\mathrm{lbf}$ | 1.356 | joule (J) | newton (N) | 0.225 | lbf |
| $\mathrm{ft}-\mathrm{lbf} / \mathrm{sec}$ | $1.818 \times 10^{-3}$ | horsepower (hp) | $\mathrm{N} \cdot \mathrm{m}$ | 0.7376 | ft-lbf |
|  |  |  | $\mathrm{N} \cdot \mathrm{m}$ |  | joule (J) |
| gallon (US Liq) | 3.785 | liter (L) |  |  |  |
| gallon (US Liq) | 0.134 | $\mathrm{ft}^{3}$ | pascal (Pa) | $9.869 \times 10^{-6}$ | atmosphere (atm) |
| gallons of water | 8.3453 | pounds of water | Pa | 1 | newton/m $\mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ |
| gamma ( $\gamma, \Gamma$ ) | $1 \times 10^{-9}$ | tesla (T) | $\mathrm{Pa} \cdot \mathrm{sec}(\mathrm{Pa} \cdot \mathrm{s})$ | 10 | poise (P) |
| gauss | $1 \times 10^{-4}$ | T | pound (lbm,avdp) | 0.454 | kilogram (kg) |
| gram (g) | $2.205 \times 10^{-3}$ | pound (lbm) | lbf | 4.448 | N |
|  |  |  | lbf-ft | 1.356 | $\mathrm{N} \cdot \mathrm{m}$ |
| hectare | $1 \times 10^{4}$ | square meters ( $\mathrm{m}^{2}$ ) | $\mathrm{lbf} / \mathrm{in}^{2}$ (psi) | 0.068 | atm |
| hectare | 2.47104 | acres | psi | 2.307 | ft of $\mathrm{H}_{2} \mathrm{O}$ |
| horsepower (hp) | 42.4 | Btu/min | psi | 2.036 | in of Hg |
| hp | 745.7 | watt (W) | psi | 6,895 | Pa |
| hp | 33,000 | (ft-lbf)/min |  |  |  |
| hp | 550 | (ft-lbf)/sec | radian | 180/ $\pi$ | degree |
| hp-hr | 2,544 | Btu |  |  |  |
| hp-hr | $1.98 \times 10^{6}$ | $\mathrm{ft}-\mathrm{lbf}$ | stokes | $1 \times 10^{-4}$ | $\mathrm{m}^{2} / \mathrm{s}$ |
| hp-hr | $2.68 \times 10^{6}$ | joule (J) |  |  |  |
| hp-hr | 0.746 | kWh | therm | $1 \times 10^{5}$ | Btu |
| inch (in) | 2.540 | centimeter (cm) | watt (W) | 3.413 | Btu/hr |
| in of Hg | 0.0334 | atm | W | $1.341 \times 10^{-3}$ | horsepower (hp) |
| in of Hg | 13.60 | in of $\mathrm{H}_{2} \mathrm{O}$ | W | 1 | joule/sec (J/s) |
| in of $\mathrm{H}_{2} \mathrm{O}$ | 0.0361 | $\mathrm{lbf} / \mathrm{in}^{2}$ (psi) | weber/m ${ }^{2}\left(\mathrm{~Wb} / \mathrm{m}^{2}\right)$ | 10,000 | gauss |
| in of $\mathrm{H}_{2} \mathrm{O}$ | 0.002458 | atm |  |  |  |

## MATHEMATICS

## STRAIGHT LINE

The general form of the equation is

$$
A x+B y+C=0
$$

The standard form of the equation is

$$
y=m x+b,
$$

which is also known as the slope-intercept form.
The point-slope form is

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
\end{array}
$$

Given two points: slope,
The angle between lines with slopes $m_{1}$ and $m_{2}$ is

$$
\alpha=\arctan \left[\left(m_{2}-m_{1}\right) /\left(1+m_{2} \cdot m_{1}\right)\right]
$$

Two lines are perpendicular if

$$
m_{1}=-1 / m_{2}
$$

The distance between two points is

$$
d=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}
$$

## QUADRATIC EQUATION

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& \text { Roots }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

## CONIC SECTIONS



$$
e=\text { eccentricity }=\cos \theta /(\cos \phi)
$$

[Note: $X^{\prime}$ and $Y^{\prime}$, in the following cases, are translated axes.]

## Case 1. Parabola $\quad e=1$ :

- 



$$
(y-k)^{2}=2 p(x-h) \text {; Center at }(h, k)
$$

is the standard form of the equation. When $h=k=0$, Focus: ( $p / 2,0$ ); Directrix: $x=-p / 2$

Case 2. Ellipse $\quad e<1$ :
-


$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 ; \quad \text { Center at }(h, k)
$$

is the standard form of the equation. When $h=k=0$,
Eccentricity: $\quad e=\sqrt{1-\left(b^{2} / a^{2}\right)}=c / a$
$b=a \sqrt{1-e^{2}}$;
Focus: $( \pm a e, 0)$; Directrix: $x= \pm a / e$
Case 3. Hyperbola $\quad e>1$ :


$$
\frac{(\mathrm{x}-\mathrm{h})^{2}}{\mathrm{a}^{2}}-\frac{(\mathrm{y}-\mathrm{k})^{2}}{\mathrm{~b}^{2}}=1 ; \quad \text { Center at }(\mathrm{h}, \mathrm{k})
$$

is the standard form of the equation. When $\mathrm{h}=\mathrm{k}=0$,
Eccentricity: $\quad e=\sqrt{1+\left(b^{2} / a^{2}\right)}=c / a$
$\mathrm{b}=\mathrm{a} \sqrt{\mathrm{e}^{2}-1} ;$
Focus: $( \pm \mathrm{ae}, 0)$; Directrix: $\mathrm{x}= \pm \mathrm{a} / \mathrm{e}$

Case 4. Circle $e=0$ :
$(x-h)^{2}+(y-k)^{2}=r^{2} ; \quad$ Center at $(h, k)$
is the general form of the equation with radius

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

- 



Length of the tangent from a point. Using the general form of the equation of a circle, the length of the tangent is found from

$$
t^{2}=\left(x^{\prime}-h\right)^{2}+\left(y^{\prime}-k\right)^{2}-r^{2}
$$

by substituting the coordinates of a point $P\left(x^{\prime}, y^{\prime}\right)$ and the coordinates of the center of the circle into the equation and computing.


## Conic Section Equation

The general form of the conic section equation is

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0
$$

where not both $A$ and $C$ are zero.
If $B^{2}-A C<0$, an ellipse is defined.
If $B^{2}-A C>0$, a hyperbola is defined.
If $B^{2}-A C=0$, the conic is a parabola.
If $A=C$ and $B=0$, a circle is defined.
If $A=B=C=0$, a straight line is defined.

$$
x^{2}+y^{2}+2 a x+2 b y+c=0
$$

is the normal form of the conic section equation, if that conic section has a principal axis parallel to a coordinate axis.

$$
\begin{aligned}
& h=-a ; k=-b \\
& r=\sqrt{a^{2}+b^{2}-c}
\end{aligned}
$$

If $a^{2}+b^{2}-c$ is positive, a circle, center $(-a,-b)$.
If $a^{2}+b^{2}-c$ equals zero, a point at $(-a,-b)$.
If $a^{2}+b^{2}-c$ is negative, locus is imaginary.

## QUADRIC SURFACE (SPHERE)

The general form of the equation is

$$
(x-h)^{2}+(y-k)^{2}+(z-m)^{2}=r^{2}
$$

with center at $(h, k, m)$.
In a three-dimensional space, the distance between two points is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

## LOGARITHMS

The logarithm of $x$ to the Base $b$ is defined by

$$
\log _{b}(x)=c, \text { where } \quad b^{c}=x
$$

Special definitions for $b=e$ or $b=10$ are:

$$
\begin{aligned}
& \ln x, \text { Base }=e \\
& \log x, \text { Base }=10
\end{aligned}
$$

To change from one Base to another:

$$
\log _{b} x=\left(\log _{a} x\right) /\left(\log _{a} b\right)
$$

e.g., $\ln x=\left(\log _{10} x\right) /\left(\log _{10} e\right)=2.302585\left(\log _{10} x\right)$

## Identities

$$
\begin{aligned}
& \log _{b} b^{n}=n \\
& \log x^{c}=c \log x ; x^{c}=\operatorname{antilog}(c \log x) \\
& \log x y=\log x+\log y \\
& \log _{b} b=1 ; \log 1=0 \\
& \log x y=\log x-\log y
\end{aligned}
$$

- Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., Englewood Cliffs, NJ, 1937.


## TRIGONOMETRY

Trigonometric functions are defined using a right triangle.
$\sin \theta=y / r, \cos \theta=x / r$
$\tan \theta=y / x, \cot \theta=x / y$
$\csc \theta=r / y, \sec \theta=r / x$


Law of Sines $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

## Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

## Identities

$\csc \theta=1 / \sin \theta$
$\sec \theta=1 / \cos \theta$
$\tan \theta=\sin \theta / \cos \theta$
$\cot \theta=1 / \tan \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\sin 2 \alpha=2 \sin \alpha \cos \alpha$
$\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=1-2 \sin ^{2} \alpha=2 \cos ^{2} \alpha-1$
$\tan 2 \alpha=(2 \tan \alpha) /\left(1-\tan ^{2} \alpha\right)$
$\cot 2 \alpha=\left(\cot ^{2} \alpha-1\right) /(2 \cot \alpha)$
$\tan (\alpha+\beta)=(\tan \alpha+\tan \beta) /(1-\tan \alpha \tan \beta)$
$\cot (\alpha+\beta)=(\cot \alpha \cot \beta-1) /(\cot \alpha+\cot \beta)$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha-\beta)=(\tan \alpha-\tan \beta) /(1+\tan \alpha \tan \beta)$
$\cot (\alpha-\beta)=(\cot \alpha \cot \beta+1) /(\cot \beta-\cot \alpha)$
$\sin (\alpha / 2)= \pm \sqrt{(1-\cos \alpha) / 2}$
$\cos (\alpha / 2)= \pm \sqrt{(1+\cos \alpha) / 2}$
$\tan (\alpha / 2)= \pm \sqrt{(1-\cos \alpha) /(1+\cos \alpha)}$
$\cot (\alpha / 2)= \pm \sqrt{(1+\cos \alpha) /(1-\cos \alpha)}$
$\sin \alpha \sin \beta=(1 / 2)[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
$\cos \alpha \cos \beta=(1 / 2)[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
$\sin \alpha \cos \beta=(1 / 2)[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
$\sin \alpha+\sin \beta=2 \sin (1 / 2)(\alpha+\beta) \cos (1 / 2)(\alpha-\beta)$
$\sin \alpha-\sin \beta=2 \cos (1 / 2)(\alpha+\beta) \sin (1 / 2)(\alpha-\beta)$
$\cos \alpha+\cos \beta=2 \cos (1 / 2)(\alpha+\beta) \cos (1 / 2)(\alpha-\beta)$
$\cos \alpha-\cos \beta=-2 \sin (1 / 2)(\alpha+\beta) \sin (1 / 2)(\alpha-\beta)$

## COMPLEX NUMBERS

Definition $i=\sqrt{-1}$
$(a+i b)+(c+i d)=(a+c)+i(b+d)$
$(a+i b)-(c+i d)=(a-c)+i(b-d)$
$(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$
$\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{(c+i d)(c-i d)}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}$
$(a+i b)+(a-i b)=2 a$
$(a+i b)-(a-i b)=2 i b$
$(a+i b)(a-i b)=a^{2}+b^{2}$

## Polar Coordinates

$x=r \cos \theta ; y=r \sin \theta ; \theta=\arctan (y / x)$
$r=|x+i y|=\sqrt{x^{2}+y^{2}}$
$x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
$\left[r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right]\left[r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right]=$

$$
r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
$$

$(x+i y)^{n}=[r(\cos \theta+i \sin \theta)]^{n}$

$$
=r^{n}(\cos n \theta+i \sin n \theta)
$$

$\frac{r_{1}\left(\cos \theta+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$

## Euler's Identity

$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{-i \theta}=\cos \theta-i \sin \theta$
$\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$

## Roots

If $k$ is any positive integer, any complex number (other than zero) has $k$ distinct roots. The $k$ roots of $r(\cos \theta+i \sin \theta)$ can be found by substituting successively $n=0,1,2, \ldots$, $(k-1)$ in the formula
$w=\sqrt[k]{r}\left[\cos \left(\frac{\theta}{k}+n \frac{360^{\circ}}{k}\right)+i \sin \left(\frac{\theta}{k}+n \frac{360^{\circ}}{k}\right)\right]$

## MATRICES

A matrix is an ordered rectangular array of numbers with $m$ rows and $n$ columns. The element $a_{i j}$ refers to row $i$ and column $j$.

## Multiplication

If $\boldsymbol{A}=\left(a_{i k}\right)$ is an $m \times n$ matrix and $\boldsymbol{B}=\left(b_{k j}\right)$ is an $n \times s$ matrix, the matrix product $A B$ is an $m \times s$ matrix

$$
\boldsymbol{C}=\left(c_{i j}\right)=\left(\sum_{l=1}^{n} a_{i l} b_{l j}\right)
$$

where $n$ is the common integer representing the number of columns of $\boldsymbol{A}$ and the number of rows of $\boldsymbol{B}(l$ and $k=1,2$, $\ldots, n)$.

## Addition

If $\boldsymbol{A}=\left(a_{i j}\right)$ and $\boldsymbol{B}=\left(b_{i j}\right)$ are two matrices of the same size $m \times n$, the $\operatorname{sum} \boldsymbol{A}+\boldsymbol{B}$ is the $m \times n$ matrix $\boldsymbol{C}=\left(c_{i j}\right)$ where $c_{i j}=a_{i j}+b_{i j}$.

## Identity

The matrix $\mathbf{I}=\left(a_{i j}\right)$ is a square $n \times n$ identity matrix where $a_{i i}=1$ for $i=1,2, \ldots, n$ and $a_{i j}=0$ for $i \neq j$.

## Transpose

The matrix $\boldsymbol{B}$ is the transpose of the matrix $\boldsymbol{A}$ if each entry $b_{j i}$ in $\boldsymbol{B}$ is the same as the entry $a_{i j}$ in $\boldsymbol{A}$ and conversely. In equation form, the transpose is $\boldsymbol{B}=\boldsymbol{A}^{T}$.

## Inverse

The inverse $\boldsymbol{B}$ of a square $n \times n$ matrix $\boldsymbol{A}$ is
$\boldsymbol{B}=\boldsymbol{A}^{-1}=\frac{\operatorname{adj}(\boldsymbol{A})}{|\boldsymbol{A}|}$, where
$\operatorname{adj}(\boldsymbol{A})=$ adjoint of $\boldsymbol{A}$ (obtained by replacing $\boldsymbol{A}^{T}$ elements with their cofactors, see DETERMINANTS) and
$|\boldsymbol{A}|=$ determinant of $\boldsymbol{A}$.

## DETERMINANTS

A determinant of order $n$ consists of $n^{2}$ numbers, called the elements of the determinant, arranged in $n$ rows and $n$ columns and enclosed by two vertical lines.
In any determinant, the minor of a given element is the determinant that remains after all of the elements are struck out that lie in the same row and in the same column as the given element. Consider an element which lies in the $j$ th column and the $i$ th row. The cofactor of this element is the value of the minor of the element (if $i+j$ is even), and it is the negative of the value of the minor of the element (if $i+j$ is $o d d$ ).
If $n$ is greater than 1 , the value of a determinant of order $n$ is the sum of the $n$ products formed by multiplying each element of some specified row (or column) by its cofactor. This sum is called the expansion of the determinant [according to the elements of the specified row (or column)]. For a second-order determinant:
$\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$

For a third-order determinant:

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{2} b_{1} c_{3}-a_{1} b_{3} c_{2}
$$

## VECTORS



Addition and subtraction:

$$
\begin{aligned}
& \mathbf{A}+\mathbf{B}=\left(a_{x}+b_{x}\right) \mathbf{i}+\left(a_{y}+b_{y}\right) \mathbf{j}+\left(a_{z}+b_{z}\right) \mathbf{k} \\
& \mathbf{A - B}=\left(a_{x}-b_{x}\right) \mathbf{i}+\left(a_{y}-b_{y}\right) \mathbf{j}+\left(a_{z}-b_{z}\right) \mathbf{k}
\end{aligned}
$$

The dot product is a scalar product and represents the projection of $\mathbf{B}$ onto $\mathbf{A}$ times $|\mathbf{A}|$. It is given by

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
& =|\mathbf{A}||\mathbf{B}| \cos \theta=\mathbf{B} \cdot \mathbf{A}
\end{aligned}
$$

The cross product is a vector product of magnitude $|\mathbf{B}||\mathbf{A}| \sin \theta$ which is perpendicular to the plane containing $\mathbf{A}$ and $\mathbf{B}$. The product is

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|=-\mathbf{B} \times \mathbf{A}
$$



The sense of $\mathbf{A} \times \mathbf{B}$ is determined by the right-hand rule.

$$
\mathbf{A} \times \mathbf{B}=|\mathbf{A}||\mathbf{B}| \mathbf{n} \sin \theta, \text { where }
$$

$\mathbf{n}=$ unit vector perpendicular to the plane of $\mathbf{A}$ and $\mathbf{B}$.

## Gradient, Divergence, and Curl

$\nabla \phi=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial \mathbf{z}} \mathbf{k}\right) \phi$
$\nabla \cdot \mathbf{V}=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \bullet\left(V_{1} \mathbf{i}+V_{2} \mathbf{j}+V_{3} \mathbf{k}\right)$
$\nabla \times \mathbf{V}=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \times\left(V_{1} \mathbf{i}+V_{2} \mathbf{j}+V_{3} \mathbf{k}\right)$
The Laplacian of a scalar function $\phi$ is

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}
$$

Identities
$\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A} ; \mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$
$\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}|^{2}$
$\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$
$\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{0}$
If $\mathbf{A} \cdot \mathbf{B}=0$, then either $\mathbf{A}=0, \mathbf{B}=0$, or $\mathbf{A}$ is perpendicular to $\mathbf{B}$.
$\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$
$\mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{C})$
$(\mathbf{B}+\mathbf{C}) \times \mathbf{A}=(\mathbf{B} \times \mathbf{A})+(\mathbf{C} \times \mathbf{A})$
$\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$
$\mathbf{i} \times \mathbf{j}=\mathbf{k}=-\mathbf{j} \times \mathbf{i} ; \mathbf{j} \times \mathbf{k}=\mathbf{i}=-\mathbf{k} \times \mathbf{j}$
$\mathbf{k} \times \mathbf{i}=\mathbf{j}=-\mathbf{i} \times \mathbf{k}$
If $\mathbf{A} \times \mathbf{B}=0$, then either $\mathbf{A}=0, \mathbf{B}=0$, or $\mathbf{A}$ is parallel to $\mathbf{B}$.
$\nabla^{2} \phi=\nabla \bullet(\nabla \phi)=(\nabla \bullet \nabla) \phi$
$\nabla \times \nabla \phi=0$
$\nabla \bullet(\nabla \times \boldsymbol{A})=0$
$\nabla \times(\nabla \times \boldsymbol{A})=\nabla(\nabla \bullet \boldsymbol{A})-\nabla^{2} \boldsymbol{A}$

## PROGRESSIONS AND SERIES

## Arithmetic Progression

To determine whether a given finite sequence of numbers is an arithmetic progression, subtract each number from the following number. If the differences are equal, the series is arithmetic.

1. The first term is $a$.
2. The common difference is $d$.
3. The number of terms is $n$.
4. The last or $n$th term is $l$.
5. The sum of $n$ terms is $S$.

$$
\begin{aligned}
l & =a+(n-1) d \\
S & =n(a+l) / 2=n[2 a+(n-1) d] / 2
\end{aligned}
$$

## Geometric Progression

To determine whether a given finite sequence is a geometric progression (G.P.), divide each number after the first by the preceding number. If the quotients are equal, the series is geometric.

1. The first term is $a$.
2. The common ratio is $r$.
3. The number of terms is $n$.
4. The last or $n$th term is $l$.
5. The sum of $n$ terms is $S$.

$$
\begin{aligned}
& \qquad \qquad \begin{array}{l}
\quad l=a r^{n-1} \\
S=a\left(1-r^{n}\right) /(1-r) ; r \neq 1 \\
S=(a-r l) /(1-r) ; r \neq 1
\end{array} \\
& \operatorname{limit}_{n \rightarrow \infty} S_{n}=a /(1-r) ; \quad r<1 \\
& \text { A G.P. converges if }|r|<1 \text { and it diverges if }|r| \geq 1 .
\end{aligned}
$$

## Properties of Series

$$
\begin{aligned}
& \sum_{i=1}^{n} c=n c ; \quad c=\mathrm{constant} \\
& \sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i} \\
& \sum_{i=1}^{n}\left(x_{i}+y_{i}-z_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} z_{i} \\
& \sum_{x=1}^{n} x=\left(n+n^{2}\right) / 2
\end{aligned}
$$

1. A power series in $x$, or in $x-a$, which is convergent in the interval $-1<x<1$ (or $-1<x-a<1$ ), defines a function of $x$ which is continuous for all values of $x$ within the interval and is said to represent the function in that interval.
2. A power series may be differentiated term by term, and the resulting series has the same interval of convergence as the original series (except possibly at the end points of the interval).
3. A power series may be integrated term by term provided the limits of integration are within the interval of convergence of the series.
4. Two power series may be added, subtracted, or multiplied, and the resulting series in each case is convergent, at least, in the interval common to the two series.
5. Using the process of long division (as for polynomials), two power series may be divided one by the other.

## Taylor's Series

$$
\begin{array}{r}
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots
\end{array}
$$

is called Taylor's series, and the function $f(x)$ is said to be expanded about the point $a$ in a Taylor's series.
If $a=0$, the Taylor's series equation becomes a Maclaurin's series.

## DIFFERENTIAL CALCULUS

## The Derivative

For any function $y=f(x)$,
the derivative $\quad=D_{x} y=d y / d x=y^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\underset{\Delta x \rightarrow 0}{\operatorname{limit}}[(\Delta y) /(\Delta x)] \\
& =\operatorname{limit}_{\Delta x \rightarrow 0}\{[f(x+\Delta x)-f(x)] /(\Delta x)\} \\
y^{\prime} & =\text { the slope of the curve } f(x) .
\end{aligned}
$$

Test for a Maximum

$$
\begin{aligned}
& y=f(x) \text { is a maximum for } \\
& x=a, \text { if } f^{\prime}(a)=0 \text { and } f^{\prime \prime}(a)<0 .
\end{aligned}
$$

## Test for a Minimum

$$
\begin{aligned}
& y=f(x) \text { is a minimum for } \\
& x=a, \text { if } f^{\prime}(a)=0 \text { and } f^{\prime \prime}(a)>0 .
\end{aligned}
$$

Test for a Point of Inflection

$$
y=f(x) \text { has a point of inflection at } x=a \text {, }
$$

if $\quad f^{\prime \prime}(a)=0$, and
if $\quad f^{\prime \prime}(x)$ changes sign as $x$ increases through

$$
x=a .
$$

## The Partial Derivative

In a function of two independent variables $x$ and $y$, a derivative with respect to one of the variables may be found if the other variable is assumed to remain constant. If $y$ is kept fixed, the function

$$
z=f(x, y)
$$

becomes a function of the single variable $x$, and its derivative (if it exists) can be found. This derivative is called the partial derivative of $z$ with respect to $x$. The partial derivative with respect to $x$ is denoted as follows:

$$
\frac{\partial z}{\partial x}=\frac{\partial f(x, y)}{\partial x}
$$

The Curvature of Any Curve


[^0]The curvature $K$ of a curve at $P$ is the limit of its average curvature for the arc $P Q$ as $Q$ approaches $P$. This is also expressed as: the curvature of a curve at a given point is the rate-of-change of its inclination with respect to its arc length.

$$
K=\operatorname{limith}_{\Delta s \rightarrow 0} \frac{\Delta \alpha}{\Delta s}=\frac{d \alpha}{d s}
$$

## Curvature in Rectangular Coordinates

$$
K=\frac{y^{\prime \prime}}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}
$$

When it may be easier to differentiate the function with respect to $y$ rather than $x$, the notation $x^{\prime}$ will be used for the derivative.

$$
\begin{aligned}
& x^{\prime}=d x / d y \\
& K=\frac{-x^{\prime \prime}}{\left[1+\left(x^{\prime}\right)^{2}\right]^{3 / 2}}
\end{aligned}
$$

## The Radius of Curvature

The radius of curvature $R$ at any point on a curve is defined as the absolute value of the reciprocal of the curvature $K$ at that point.

$$
\begin{array}{ll}
R=\frac{1}{|K|} & (K \neq 0) \\
R=\left|\frac{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}{\left|y^{\prime \prime}\right|}\right| & \left(y^{\prime \prime} \neq 0\right)
\end{array}
$$

## L'Hospital's Rule (L'Hôpital's Rule)

If the fractional function $f(x) g(x)$ assumes one of the indeterminate forms $0 / 0$ or $\infty / \infty$ (where $\alpha$ is finite or infinite), then

$$
\operatorname{limiti}_{x \rightarrow \alpha} f(x) / g(x)
$$

is equal to the first of the expressions

$$
\operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime}(x)}{g^{\prime}(x)}, \operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}, \operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime \prime \prime}(x)}{g^{\prime \prime \prime}(x)}
$$

which is not indeterminate, provided such first indicated limit exists.

## INTEGRAL CALCULUS

The definite integral is defined as:

$$
\operatorname{limit}_{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

Also, $\Delta x_{i} \rightarrow 0$ for all $i$.
A table of derivatives and integrals is available on page 9. The integral equations can be used along with the following methods of integration:
A. Integration by Parts (integral equation \#6),
B. Integration by Substitution, and
C. Separation of Rational Fractions into Partial Fractions.

## DERIVATIVES AND INDEFINITE INTEGRALS

In these formulas, $u$, $v$, and $w$ represent functions of $x$. Also, $a, c$, and $n$ represent constants. All arguments of the trigonometric functions are in radians. A constant of integration should be added to the integrals. To avoid terminology difficulty, the following definitions are followed: $\arcsin u=\sin ^{-1} u,(\sin u)^{-1}=1 / \sin u$.

1. $d c / d x=0$
2. $d x / d x=1$
3. $d(c u) / d x=c d u / d x$
4. $\quad d(u+v-w) / d x=d u / d x+d v / d x-d w / d x$
5. $\quad d(u v) / d x=u d v / d x+v d u / d x$
6. $\quad d(u v w) / d x=u v d w / d x+u w d v / d x+v w d u / d x$
7. $\frac{d(u / v)}{d x}=\frac{v d u / d x-u d v / d x}{v^{2}}$
8. $\quad d\left(u^{n}\right) / d x=n u^{n-1} d u / d x$
9. $d[f(u)] / d x=\{d[f(u)] / d u\} d u / d x$
10. $d u / d x=1 /(d x / d u)$
11. $\frac{d\left(\log _{a} u\right)}{d x}=\left(\log _{\mathrm{a}} e\right) \frac{1}{u} \frac{d u}{d x}$
12. $\frac{d(\ln u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
13. $\frac{d\left(a^{u}\right)}{d x}=(\ln a) a^{u} \frac{d u}{d x}$
14. $d\left(e^{u}\right) / d x=e^{u} d u / d x$
15. $d\left(u^{v}\right) / d x=v u^{v-1} d u / d x+(\ln u) u^{v} d v / d x$
16. $d(\sin u) / d x=\cos u d u / d x$
17. $d(\cos u) / d x=-\sin u d u / d x$
18. $d(\tan u) / d x=\sec ^{2} u d u / d x$
19. $d(\cot u) / d x=-\csc ^{2} u d u / d x$
20. $d(\sec u) / d x=\sec u \tan u d u / d x$
21. $d(\csc u) / d x=-\csc u \cot u d u / d x$
22. $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\left(-\pi / 2 \leq \sin ^{-1} u \leq \pi / 2\right)$
23. $\frac{d\left(\cos ^{-1} u\right)}{d x}=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} \quad\left(0 \leq \cos ^{-1} u \leq \pi\right)$
24. $\frac{d\left(\tan ^{-1} u\right)}{d x}=\frac{1}{1+u^{2}} \frac{d u}{d x}$
$\left(-\pi / 2<\tan ^{-1} u<\pi / 2\right)$
25. $\frac{d\left(\cot ^{-1} u\right)}{d x}=-\frac{1}{1+u^{2}} \frac{d u}{d x} \quad\left(0<\cot ^{-1} u<\pi\right)$
26. $\frac{d\left(\sec ^{-1} u\right)}{d x}=\frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x}$

$$
\left(0 \leq \sec ^{-1} u<\pi / 2\right)\left(-\pi \leq \sec ^{-1} u<-\pi / 2\right)
$$

$\frac{d\left(\csc ^{-1} u\right)}{d x}=-\frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x}$

$$
\left(0<\csc ^{-1} u \leq \pi / 2\right)\left(-\pi<\csc ^{-1} u \leq-\pi / 2\right)
$$

1. $\int d f(x)=f(x)$
2. $\int d x=x$
3. $\int a f(x) d x=a \int f(x) d x$
4. $\int[u(x) \pm v(x)] d x=\int u(x) d x \pm \int v(x) d x$
5. $\int x^{m} d x=\frac{x^{m+1}}{m+1} \quad(m \neq-1)$
6. $\int u(x) d v(x)=u(x) v(x)-\int v(x) d u(x)$
7. $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|$
8. $\int \frac{d x}{\sqrt{x}}=2 \sqrt{x}$
9. $\int a^{x} d x=\frac{a^{x}}{\ln a}$
10. $\int \sin x d x=-\cos x$
11. $\int \cos x d x=\sin x$
12. $\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}$
13. $\int \cos ^{2} x d x=\frac{x}{2}+\frac{\sin 2 x}{4}$
14. $\int x \sin x d x=\sin x-x \cos x$
15. $\int x \cos x d x=\cos x+x \sin x$
16. $\int \sin x \cos x d x=\left(\sin ^{2} x\right) / 2$
17. $\int \sin a x \cos b x d x=-\frac{\cos (a-b) x}{2(a-b)}-\frac{\cos (a+b) x}{2(a+b)} \quad\left(a^{2} \neq b^{2}\right)$
18. $\int \tan x d x=-\ln |\cos x|=\ln |\sec x|$
19. $\int \cot x d x=-\ln |\csc x|=\ln |\sin x|$
20. $\int \tan ^{2} x d x=\tan x-x$
21. $\int \cot ^{2} x d x=-\cot x-x$
22. $\int e^{a x} d x=(1 / a) e^{a x}$
23. $\int x e^{a x} d x=\left(e^{a x} / a^{2}\right)(a x-1)$
24. $\int \ln x d x=x[\ln (x)-1] \quad(x>0)$
25. $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
26. $\int \frac{d x}{a x^{2}+c}=\frac{1}{\sqrt{a c}} \tan ^{-1}\left(x \sqrt{\frac{a}{c}}\right), \quad(a>0, c>0)$

27a. $\int \frac{d x}{a x^{2}+b x+c}=\frac{2}{\sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a c-b^{2}}}$

$$
\left(4 a c-b^{2}>0\right)
$$

27b. $\int \frac{d x}{a x^{2}+b x+c}=\frac{1}{\sqrt{b^{2}-4 a c}} \ln \left|\frac{2 a x+b-\sqrt{b^{2}-4 a c}}{2 a x+b+\sqrt{b^{2}-4 a c}}\right|$

$$
\left(b^{2}-4 a c>0\right)
$$

27c. $\int \frac{d x}{a x^{2}+b x+c}=-\frac{2}{2 a x+b}, \quad\left(b^{2}-4 a c=0\right)$

## MENSURATION OF AREAS AND VOLUMES

## Nomenclature

$A=$ total surface area
$P=$ perimeter
$V=$ volume

## Parabola


$A=2 b h / 3$


## Ellipse


$P_{\text {approx }}=2 \pi \sqrt{\left(a^{2}+b^{2}\right)} / 2$
$P=\pi(a+b)\left[\begin{array}{l}1+(1 / 2)^{2} \lambda^{2}+(1 / 2 \times 1 / 4)^{2} \lambda^{4} \\ +(1 / 2 \times 1 / 4 \times 3 / 6)^{2} \lambda^{6}+(1 / 2 \times 1 / 4 \times 3 / 6 \times 5 / 8)^{2} \lambda^{8} \\ +(1 / 2 \times 1 / 4 \times 3 / 6 \times 5 / 8 \times 7 / 10)^{2} \lambda^{10}+\ldots\end{array}\right]$,
where
$\lambda=(a-b) /(a+b)$

## Circular Segment

$\bullet$


$$
\begin{aligned}
& A=\left[r^{2}(\phi-\sin \phi)\right] / 2 \\
& \quad \phi=s / r=2\{\arccos [(r-d) / r]\}
\end{aligned}
$$

## Circular Sector



## Sphere



- Gieck, K. \& Gieck R., Engineering Formulas, 6th ed., Gieck Publishing, 1967.


## MENSURATION OF AREAS AND VOLUMES (continued)

## Parallelogram



$$
\begin{aligned}
d_{1} & =\sqrt{a^{2}+b^{2}-2 a b(\cos \phi)} \\
d_{2} & =\sqrt{a^{2}+b^{2}+2 a b(\cos \phi)} \\
d_{1}^{2}+d_{2}^{2} & =2\left(a^{2}+b^{2}\right) \\
A & =a h=a b(\sin \phi)
\end{aligned}
$$

If $a=b$, the parallelogram is a rhombus.

## Regular Polygon ( $n$ equal sides)



Prismoid


## Right Circular Cone

$$
\begin{aligned}
& =\left(\pi r^{2} h\right) / 3 \\
& =\pi r\left(r+\sqrt{r^{2}+h^{2}}\right) \\
& A_{x}: A_{b}=x^{2}: h^{2}
\end{aligned}
$$

## Right Circular Cylinder

- 



$$
\begin{aligned}
& V=\pi r^{2} h=\frac{\pi d^{2} h}{4} \\
& A=\text { side area }+ \text { end areas }=2 \pi r(h+r)
\end{aligned}
$$

## Paraboloid of Revolution



$$
V=\frac{\pi d^{2} h}{8}
$$

- Gieck, K. \& R. Gieck, Engineering Formulas, 6th ed., Gieck Publishing, 1967.


## CENTROIDS AND MOMENTS OF INERTIA

The location of the centroid of an area, bounded by the axes and the function $y=f(x)$, can be found by integration.

$$
\begin{aligned}
& x_{c}=\frac{\int x d A}{A} \\
& y_{c}=\frac{\int y d A}{A} \\
& A=\int f(x) d x \\
& d A=f(x) d x=g(y) d y
\end{aligned}
$$

The first moment of area with respect to the $y$-axis and the $x$-axis, respectively, are:

$$
\begin{aligned}
& M_{y}=\int x d A=x_{c} A \\
& M_{x}=\int y d A=y_{c} A
\end{aligned}
$$

The moment of inertia (second moment of area) with respect to the $y$-axis and the $x$-axis, respectively, are:

$$
\begin{aligned}
& I_{y}=\int x^{2} d A \\
& I_{x}=\int y^{2} d A
\end{aligned}
$$

The moment of inertia taken with respect to an axis passing through the area's centroid is the centroidal moment of inertia. The parallel axis theorem for the moment of inertia with respect to another axis parallel with and located $d$ units from the centroidal axis is expressed by

$$
I_{\text {parallel axis }}=I_{c}+A d^{2}
$$

In a plane, $J=\int r^{2} d A=I_{x}+I_{y}$
Values for standard shapes are presented in tables in the STATICS and DYNAMICS sections.

## DIFFERENTIAL EQUATIONS

A common class of ordinary linear differential equations is

$$
b_{n} \frac{d^{n} y(x)}{d x^{n}}+\ldots+b_{1} \frac{d y(x)}{d x}+b_{0} y(x)=f(x)
$$

where $b_{n}, \ldots, b_{i}, \ldots, b_{1}, b_{0}$ are constants.
When the equation is a homogeneous differential equation, $f(x)=0$, the solution is

$$
y_{h}(x)=C_{1} e^{r_{i} x}+C_{2} e^{r_{2} x}+\ldots+C_{i} e^{r_{i} x}+\ldots+C_{n} e^{r_{n} x}
$$

where $r_{n}$ is the $n$th distinct root of the characteristic polynomial $P(x)$ with

$$
P(r)=b_{n} r^{n}+b_{n-1} r^{n-1}+\ldots+b_{1} r+b_{0}
$$

If the root $r_{1}=r_{2}$, then $C_{2} e^{r_{2} x}$ is replaced with $C_{2} x e^{r_{1} x}$.
Higher orders of multiplicity imply higher powers of $x$. The complete solution for the differential equation is

$$
y(x)=y_{h}(x)+y_{p}(x),
$$

where $y_{p}(x)$ is any solution with $f(x)$ present. If $f(x)$ has $e^{r_{n} x}$ terms, then resonance is manifested. Furthermore, specific $f(x)$ forms result in specific $y_{p}(x)$ forms, some of which are:

| $f(x)$ | $\boldsymbol{y}_{p}^{(x)}$ |
| :--- | :--- |
| $A$ | $B$ |
| $A e^{\alpha x}$ | $B e^{\alpha x}, \alpha \neq r_{n}$ |
| $A_{1} \sin \omega x+A_{2} \cos \omega x$ | $B_{1} \sin \omega x+B_{2} \cos \omega x$ |

If the independent variable is time $t$, then transient dynamic solutions are implied.

## First-Order Linear Homogeneous Differential Equations With Constant Coefficients

$$
y^{\prime}+a y=0, \text { where } a \text { is a real constant: }
$$

$$
\text { Solution, } y=C e^{-a t}
$$

where $C=$ a constant that satisfies the initial conditions.

## First-Order Linear Nonhomogeneous Differential Equations

$$
\begin{gathered}
\tau \frac{d y}{d t}+y=K x(t) \quad x(t)=\left\{\begin{array}{ll}
A & t<0 \\
B & t>0
\end{array}\right\} \\
y(0)=K A
\end{gathered}
$$

$\tau$ is the time constant
K is the gain
The solution is

$$
\begin{aligned}
& y(t)=K A+(K B-K A)\left(1-\exp \left(\frac{-t}{\tau}\right)\right) \text { or } \\
& \frac{t}{\tau}=\ln \left[\frac{K B-K A}{K B-y}\right]
\end{aligned}
$$

## Second-Order Linear Homogeneous Differential Equations with Constant Coefficients

An equation of the form

$$
y^{\prime \prime}+2 a y^{\prime}+b y=0
$$

can be solved by the method of undetermined coefficients where a solution of the form $y=C e^{r x}$ is sought. Substitution of this solution gives

$$
\left(r^{2}+2 a r+b\right) C e^{r x}=0
$$

and since $C e^{r x}$ cannot be zero, the characteristic equation must vanish or

$$
r^{2}+2 a r+b=0
$$

The roots of the characteristic equation are

$$
r_{1,2}=-a \pm \sqrt{a^{2}-b}
$$

and can be real and distinct for $a^{2}>b$, real and equal for $a^{2}=b$, and complex for $a^{2}<b$.
If $a^{2}>b$, the solution is of the form (overdamped)

$$
y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}
$$

If $a^{2}=b$, the solution is of the form (critically damped)

$$
y=\left(C_{1}+C_{2} x\right) e^{r_{1} x}
$$

If $a^{2}<b$, the solution is of the form (underdamped)

$$
\begin{aligned}
& y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right), \text { where } \\
& \alpha=-a \\
& \beta=\sqrt{b-a^{2}}
\end{aligned}
$$

## FOURIER TRANSFORM

The Fourier transform pair, one form of which is

$$
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& f(t)=[1 /(2 \pi)]]_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

can be used to characterize a broad class of signal models in terms of their frequency or spectral content. Some useful transform pairs are:

| $\boldsymbol{f}(\boldsymbol{t})$ | $\boldsymbol{F}(\omega)$ |
| :--- | :--- |
| $\delta(t)$ | 1 |
| $u(t)$ | $\pi \delta(\omega)+1 / \mathrm{j} \omega$ |
| $u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right)=r_{\text {rect }} \frac{t}{\tau}$ | $\tau \frac{\sin (\omega \tau / 2)}{\omega \tau / 2}$ |
| $e^{j \omega_{o} t}$ | $2 \pi \delta\left(\omega-\omega_{o}\right)$ |

Some mathematical liberties are required to obtain the second and fourth form. Other Fourier transforms are derivable from the Laplace transform by replacing $s$ with $\mathrm{j} \omega$ provided

$$
\begin{aligned}
& f(t)=0, t<0 \\
& \int_{0}^{\infty}|f(t)| d t<\infty
\end{aligned}
$$

Also refer to Fourier Series and Laplace Transforms in ELECTRICAL AND COMPUTER ENGINEERING section of this handbook.

## DIFFERENCE EQUATIONS

Difference equations are used to model discrete systems. Systems which can be described by difference equations include computer program variables iteratively evaluated in a loop, sequential circuits, cash flows, recursive processes, systems with time-delay components, etc. Any system whose input $v(t)$ and output $y(t)$ are defined only at the equally spaced intervals $t=k T$ can be described by a difference equation

## First-Order Linear Difference Equation

The difference equation

$$
P_{k}=P_{k-1}(1+i)-A
$$

represents the balance $P$ of a loan after the $k$ th payment $A$. If $P_{k}$ is defined as $y(k)$, the model becomes

$$
y(k)-(1+i) y(k-1)=-A
$$

## Second-Order Linear Difference Equation

The Fibonacci number sequence can be generated by

$$
y(k)=y(k-1)+y(k-2)
$$

where $y(-1)=1$ and $y(-2)=1$. An alternate form for this model is $f(\mathrm{k}+2)=f(k+1)+f(k)$

$$
\text { with } f(0)=1 \text { and } f(1)=1 \text {. }
$$

## NUMERICAL METHODS

## Newton's Method for Root Extraction

Given a function $f(x)$ which has a simple root of $f(x)=0$ at $x=a$ an important computational task would be to find that root. If $f(x)$ has a continuous first derivative then the $(j+1)$ st estimate of the root is

$$
a^{j+1}=a^{j}-\left.\frac{f(x)}{\frac{d f(x)}{d x}}\right|_{x=a^{j}}
$$

The initial estimate of the root $a^{0}$ must be near enough to the actual root to cause the algorithm to converge to the root.

## Newton's Method of Minimization

Given a scalar value function

$$
h(\boldsymbol{x})=h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

find a vector $\boldsymbol{x}^{*} \in R_{n}$ such that

$$
h\left(\boldsymbol{x}^{*}\right) \leq h(\boldsymbol{x}) \text { for all } \boldsymbol{x}
$$

Newton's algorithm is

$$
\boldsymbol{x}_{K+1}=\boldsymbol{x}_{K}-\left.\left(\left.\frac{\partial^{2} h}{\partial x^{2}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{K}}\right)^{-1} \frac{\partial h}{\partial x}\right|_{\boldsymbol{x}=\boldsymbol{x}_{K}} \text {, where }
$$

$$
\frac{\partial h}{\partial x}=\left[\begin{array}{l}
\frac{\partial h}{\partial x_{1}} \\
\frac{\partial h}{\partial x_{2}} \\
\cdots \\
\cdots \\
\frac{\partial h}{\partial x_{n}}
\end{array}\right]
$$

and

$$
\frac{\partial^{2} h}{\partial x^{2}}=\left[\begin{array}{ccccc}
\frac{\partial^{2} h}{\partial x_{1}^{2}} & \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} h}{\partial x_{2}^{2}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{2} \partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots & \ldots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} h}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} h}{\partial x_{2} \partial x_{n}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{n}^{2}}
\end{array}\right]
$$

## Numerical Integration

Three of the more common numerical integration algorithms used to evaluate the integral

$$
\int_{a}^{b} f(x) d x
$$

are:
Euler's or Forward Rectangular Rule

$$
\int_{a}^{b} f(x) d x \approx \Delta x \sum_{k=0}^{n-1} f(a+k \Delta x)
$$

Trapezoidal Rule
for $n=1$

$$
\int_{a}^{b} f(x) d x \approx \Delta x\left[\frac{f(a)+f(b)}{2}\right]
$$

for $n>1$

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f(a)+2 \sum_{k=1}^{n-1} f(a+k \Delta x)+f(b)\right]
$$

Simpson's Rule/Parabolic Rule ( $n$ must be an even integer)
for $n=2$

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{b-a}{6}\right)\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

for $\mathrm{n} \geq 4$

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[\begin{array}{l}
f(a)+2 \sum_{k=2,4,6, \ldots}^{n-2} f(a+k \Delta x) \\
+4 \sum_{k=1,3,5, \ldots}^{n-1} f(a+k \Delta x)+f(b)
\end{array}\right]
$$

with $\Delta x=(b-a) / n$
$n=$ number of intervals between data points

## Numerical Solution of Ordinary Differential Equations

## Euler's Approximation

Given a differential equation

$$
d x / d t=f(x, t) \text { with } x(0)=x_{o}
$$

At some general time $k \Delta t$

$$
x[(k+1) \Delta t] \cong x(k \Delta t)+\Delta t f[x(k \Delta t), k \Delta t]
$$

which can be used with starting condition $x_{o}$ to solve recursively for $x(\Delta t), x(2 \Delta t), \ldots, x(n \Delta t)$.
The method can be extended to $n$th order differential equations by recasting them as $n$ first-order equations.
In particular, when $d x / d t=f(x)$

$$
x[(k+1) \Delta t] \cong x(k \Delta t)+\Delta t f[x(k \Delta t)]
$$

which can be expressed as the recursive equation

$$
x_{k+1}=x_{k}+\Delta t\left(d x_{k} / d t\right)
$$

## ENGINEERING PROBABILITY AND STATISTICS

## DISPERSION, MEAN, MEDIAN, AND MODE VALUES

If $X_{1}, X_{2}, \ldots, X_{n}$ represent the values of a random sample of $n$ items or observations, the arithmetic mean of these items or observations, denoted $\bar{X}$, is defined as

$$
\bar{X}=(1 / n)\left(X_{1}+X_{2}+\ldots+X_{n}\right)=(1 / n) \sum_{i=1}^{n} X_{i}
$$

$$
\bar{X} \rightarrow \mu \text { for sufficiently large values of } n
$$

The weighted arithmetic mean is

$$
\bar{X}_{w}=\frac{\sum w_{i} X_{i}}{\sum w_{i}}, \text { where }
$$

$X_{i}=$ the value of the $i^{\text {th }}$ observation, and
$w_{i}=$ the weight applied to $X_{i}$.
The variance of the population is the arithmetic mean of the squared deviations from the population mean. If $\mu$ is the arithmetic mean of a discrete population of size $N$, the population variance is defined by

$$
\begin{aligned}
\sigma^{2} & =(1 / N)\left[\left(X_{1}-\mu\right)^{2}+\left(X_{2}-\mu\right)^{2}+\ldots+\left(X_{N}-\mu\right)^{2}\right] \\
& =(1 / N) \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}
\end{aligned}
$$

The standard deviation of the population is

$$
\sigma=\sqrt{(1 / N) \sum\left(X_{i}-\mu\right)^{2}}
$$

The sample variance is

$$
s^{2}=[1 /(n-1)] \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

The sample standard deviation is

$$
s=\sqrt{[1 /(n-1)] \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

The sample coefficient of variation $=C V=s / \bar{X}$
The sample geometric mean $=\sqrt[n]{X_{1} X_{2} X_{3} \ldots X_{n}}$
The sample root-mean-square value $=\sqrt{(1 / n) \sum X_{i}^{2}}$
When the discrete data are rearranged in increasing order and $n$ is odd, the median is the value of the $\left(\frac{n+1}{2}\right)^{\text {th }}$ item. When $n$ is even, the median is the average of the $\left(\frac{n}{2}\right)^{\text {th }}$ and $\left(\frac{n}{2}+1\right)^{\text {th }}$ items.

The mode of a set of data is the value that occurs with greatest frequency.

## PERMUTATIONS AND COMBINATIONS

A permutation is a particular sequence of a given set of objects. A combination is the set itself without reference to order.

1. The number of different permutations of $n$ distinct objects taken $r$ at a time is

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

2. The number of different combinations of $n$ distinct objects taken $r$ at a time is

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{[r!(n-r)!]}
$$

3. The number of different permutations of $n$ objects taken $n$ at a time, given that $n_{i}$ are of type $i$, where $i=1,2, \ldots, k$ and $\sum n_{i}=n$, is

$$
P\left(n ; n_{1}, n_{2}, \ldots n_{k}\right)=\frac{n!}{n_{1}!n_{2}!\ldots . n_{k}!}
$$

## LAWS OF PROBABILITY

## Property 1. General Character of Probability

The probability $P(E)$ of an event $E$ is a real number in the range of 0 to 1 . The probability of an impossible event is 0 and that of an event certain to occur is 1.
Property 2. Law of Total Probability
$P(A+B)=P(A)+P(B)-P(A, B)$, where
$P(A+B)=$ the probability that either $A$ or $B$ occur alone or that both occur together,
$P(A)=$ the probability that $A$ occurs,
$P(B) \quad=\quad$ the probability that $B$ occurs, and
$P(A, B)=$ the probability that both $A$ and $B$ occur simultaneously.

## Property 3. Law of Compound or Joint Probability

 If neither $P(A)$ nor $P(B)$ is zero,$$
P(A, B)=P(A) P(B \mid A)=P(B) P(A \mid B), \text { where }
$$

$P(B \mid A)=$ the probability that $B$ occurs given the fact that $A$ has occurred, and
$P(A \mid B)=$ the probability that $A$ occurs given the fact that $B$ has occurred.
If either $P(A)$ or $P(B)$ is zero, then $P(A, B)=0$.

## PROBABILITY FUNCTIONS

A random variable $X$ has a probability associated with each of its possible values. The probability is termed a discrete probability if $X$ can assume only discrete values, or

$$
X=x_{1}, x_{2}, x_{3}, \ldots, x_{n}
$$

The discrete probability of any single event, $X=x_{i}$, occurring is defined as $P\left(x_{i}\right)$ while the probability mass function of the random variable $X$ is defined by

$$
f\left(x_{k}\right)=P\left(X=x_{k}\right), k=1,2, \ldots, n
$$

## Probability Density Function

If $X$ is continuous, the probability density function, $f$, is defined such that

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

## Cumulative Distribution Functions

The cumulative distribution function, $F$, of a discrete random variable $X$ that has a probability distribution described by $P\left(x_{i}\right)$ is defined as

$$
F\left(x_{m}\right)=\sum_{k=1}^{m} P\left(x_{k}\right)=P\left(X \leq x_{m}\right), m=1,2, \ldots, n
$$

If $X$ is continuous, the cumulative distribution function, $F$, is defined by

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

which implies that $F(a)$ is the probability that $X \leq a$.

## Expected Values

Let $X$ be a discrete random variable having a probability mass function

$$
f\left(x_{k}\right), k=1,2, \ldots, n
$$

The expected value of $X$ is defined as

$$
\mu=E[X]=\sum_{k=1}^{n} x_{k} f\left(x_{k}\right)
$$

The variance of $X$ is defined as

$$
\sigma^{2}=V[X]=\sum_{k=1}^{n}\left(x_{k}-\mu\right)^{2} f\left(x_{k}\right)
$$

Let $X$ be a continuous random variable having a density function $f(X)$ and let $Y=g(X)$ be some general function. The expected value of $Y$ is:

$$
E[Y]=E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

The mean or expected value of the random variable $X$ is now defined as

$$
\mu=E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

while the variance is given by

$$
\sigma^{2}=V[X]=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

The standard deviation is given by

$$
\sigma=\sqrt{V[X]}
$$

The coefficient of variation is defined as $\sigma / \mu$.

## Sums of Random Variables

$$
Y=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

The expected value of $Y$ is:

$$
\mu_{y}=E(Y)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)
$$

If the random variables are statistically independent, then the variance of $Y$ is:

$$
\begin{aligned}
\sigma_{y}^{2} & =V(Y)=a_{1}^{2} V\left(X_{1}\right)+a_{2}^{2} V\left(X_{2}\right)+\ldots+a_{n}^{2} V\left(X_{n}\right) \\
& =a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}+\ldots+a_{n}^{2} \sigma_{n}^{2}
\end{aligned}
$$

Also, the standard deviation of Y is:

$$
\sigma_{y}=\sqrt{\sigma_{y}^{2}}
$$

## Binomial Distribution

$P(x)$ is the probability that $x$ successes will occur in $n$ trials. If $p=$ probability of success and $q=$ probability of failure $=$ $1-p$, then

$$
P_{n}(x)=C(n, x) p^{x} q^{n-x}=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}
$$

where
$x \quad=0,1,2, \ldots, n$,
$C(n, x)=$ the number of combinations, and
$n, p \quad=$ parameters.

## Normal Distribution (Gaussian Distribution)

This is a unimodal distribution, the mode being $x=\mu$, with two points of inflection (each located at a distance $\sigma$ to either side of the mode). The averages of $n$ observations tend to become normally distributed as $n$ increases. The variate $x$ is said to be normally distributed if its density function $f(x)$ is given by an expression of the form

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \text { where }
$$

$\mu=$ the population mean,
$\sigma=$ the standard deviation of the population, and
$-\infty \leq x \leq \infty$

When $\mu=0$ and $\sigma^{2}=\sigma=1$, the distribution is called a standardized or unit normal distribution. Then

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { where }-\infty \leq x \leq \infty .
$$

It is noted that $Z=\frac{x-\mu}{\sigma}$ follows a standardized normal distribution function.
A unit normal distribution table is included at the end of this section. In the table, the following notations are utilized:
$F(x)=$ the area under the curve from $-\infty$ to $x$,
$R(x)=$ the area under the curve from $x$ to $\infty$, and
$W(x)=$ the area under the curve between $-x$ and $x$.
The Central Limit Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent and identically distributed random variables each having mean $\mu$ and variance $\sigma^{2}$. Then for large $n$, the Central Limit Theorem asserts that the sum

$$
Y=X_{1}+X_{2}+\ldots X_{n} \text { is approximately normal. }
$$

## $\boldsymbol{t}$-Distribution

The variate $t$ is defined as the quotient of two independent variates $x$ and $r$ where $x$ is unit normal and $r$ is the root mean square of $n$ other independent unit normal variates; that is, $t=x / r$. The following is the $t$-distribution with $n$ degrees of freedom:

$$
f(t)=\frac{\Gamma[(n+1)] / 2}{\Gamma(n / 2) \sqrt{n \pi}} \frac{1}{\left(1+t^{2} / n\right)^{(n+1) / 2}}
$$

where $-\infty \leq t \leq \infty$.
A table at the end of this section gives the values of $t_{\alpha, n}$ for values of $\alpha$ and $n$. Note that in view of the symmetry of the $t$-distribution, $t_{1-\alpha, n}=-t_{\alpha, n}$.
The function for $\alpha$ follows:

$$
\alpha=\int_{t_{a, n}}^{\infty} f(t) d t
$$

## $\chi^{2}$-Distribution

If $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent unit normal random variables, then

$$
\chi^{2}=Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2}
$$

is said to have a chi-square distribution with $n$ degrees of freedom. The density function is shown as follows:

$$
f\left(\chi^{2}\right)=\frac{\frac{1}{2} e^{-\frac{x^{2}}{2}}\left(\frac{x^{2}}{2}\right)^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right)}, \chi^{2}>0
$$

A table at the end of this section gives values of $\chi_{\alpha, n}^{2}$ for selected values of $\alpha$ and $n$.

## Gamma Function

$\Gamma(n)=\int_{o}^{\infty} t^{n-1} e^{-t} d t, \quad n>0$
$\mu_{\bar{y}}=\mu$
and the standard deviation

$$
\sigma_{\bar{y}}=\frac{\sigma}{\sqrt{n}}
$$

## LINEAR REGRESSION

## Least Squares

$$
\begin{aligned}
& y=\hat{a}+\hat{b} x, \text { where } \\
& y \text {-intercept }: \hat{a}=\bar{y}-\hat{b} \bar{x}, \\
& \text { and slope }: \hat{b}=S_{x y} / S_{x x}, \\
& S_{x y}=\sum_{\mathrm{i}=1}^{n} x_{i} y_{i}-(1 / n)\left(\sum_{\mathrm{i}=1}^{n} x_{i}\right)\left(\sum_{\mathrm{i}=1}^{n} y_{i}\right), \\
& S_{x x}=\sum_{\mathrm{i}=1}^{n} x_{i}^{2}-(1 / n)\left(\sum_{\mathrm{i}=1}^{n} x_{i}\right)^{2}, \\
& n=\text { sample size, } \\
& \bar{y}=(1 / n)\left(\sum_{i=1}^{n} y_{i}\right), \text { and } \\
& \bar{x}=(1 / n)\left(\sum_{i=1}^{n} x_{i}\right) .
\end{aligned}
$$

## Standard Error of Estimate

$$
\begin{aligned}
& S_{e}^{2}=\frac{S_{x x} S_{y y}-S_{x y}^{2}}{S_{x x}(n-2)}=M S E, \text { where } \\
& S_{y y}=\sum_{i=1}^{n} y_{i}^{2}-(1 / n)\left(\sum_{i=1}^{n} y_{i}\right)^{2}
\end{aligned}
$$

## Confidence Interval for $\boldsymbol{a}$

$$
\hat{a} \pm t_{\alpha / 2, n-2} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right) M S E}
$$

## Confidence Interval for $\boldsymbol{b}$

$$
\hat{b} \pm t_{\alpha / 2, n-2} \sqrt{\frac{M S E}{S_{x x}}}
$$

## Sample Correlation Coefficient

$$
r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

## HYPOTHESIS TESTING

Consider an unknown parameter $\theta$ of a statistical distribution. Let the null hypothesis be
$H_{0}: \theta=\theta_{0}$
and let the alternative hypothesis be
$H_{1}: \theta=\theta_{1}$
Rejecting $H_{0}$ when it is true is known as a type I error, while accepting $H_{1}$ when it is wrong is known as a type II error. Furthermore, the probabilities of type I and type II errors are usually represented by the symbols $\alpha$ and $\beta$, respectively:

$$
\begin{aligned}
& \alpha=\text { probability (type I error) } \\
& \beta=\text { probability (type II error) }
\end{aligned}
$$

The probability of a type I error is known as the level of significance of the test.
Assume that the values of $\alpha$ and $\beta$ are given. The sample size can be obtained from the following relationships. In (A) and (B), $\mu_{1}$ is the value assumed to be the true mean.
(A) $H_{0}: \mu=\mu_{0} ; H_{1}: \mu \neq \mu_{0}$

$$
\beta=\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+Z_{\alpha / 2}\right)-\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}-Z_{\alpha / 2}\right)
$$

An approximate result is

$$
n \simeq \frac{\left(Z_{\alpha / 2}+Z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{1}-\mu_{0}\right)^{2}}
$$

(B) $H_{0}: \mu=\mu_{0} ; H_{1}: \mu>\mu_{0}$

$$
\begin{aligned}
& \beta=\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+Z_{\alpha}\right) \\
& n=\frac{\left(Z_{\alpha}+Z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{1}-\mu_{0}\right)^{2}}
\end{aligned}
$$

Refer to the Hypothesis Testing table in the INDUSTRIAL ENGINEERING section of this handbook.

## CONFIDENCE INTERVALS

Confidence Interval for the Mean $\mu$ of a Normal Distribution
(a) Standard deviation $\sigma$ is known

$$
\bar{X}-Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

(b) Standard deviation $\sigma$ is not known

$$
\bar{X}-t_{\alpha / 2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $t_{\alpha / 2}$ corresponds to $n-1$ degrees of freedom.

## Confidence Interval for the Difference Between Two Means $\mu_{1}$ and $\mu_{2}$

(a) Standard deviations $\sigma_{1}$ and $\sigma_{2}$ known

$$
\bar{X}_{1}-\bar{X}_{2}-Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{X}_{1}-\bar{X}_{2}+Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

(b) Standard deviations $\sigma_{1}$ and $\sigma_{2}$ are not known

$$
\bar{X}_{1}-\bar{X}_{2}-t_{\alpha / 2} \sqrt{\frac{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left[\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right]}{n_{1}+n_{2}-2}} \leq \mu_{1}-\mu_{2} \leq \bar{X}_{1}-\bar{X}_{2}-t_{\alpha / 2} \sqrt{\frac{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left[\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right]}{n_{1}+n_{2}-2}}
$$

where $t_{\alpha / 2}$ corresponds to $n_{1}+n_{2}-2$ degrees of freedom.

## Confidence Intervals for the Variance $\sigma^{2}$ of a Normal Distribution

$$
\frac{(n-1) s^{2}}{x_{\alpha / 2, n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{x_{1-\alpha / 2, n-1}^{2}}
$$

Sample Size

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

Value of $\mathbf{Z}_{\boldsymbol{\alpha} / \mathbf{2}}$

| Confidence | $Z_{\alpha / 2}$ |
| :---: | :---: |
| Interval | 1.2816 |
| $80 \%$ | 1.6449 |
| $90 \%$ | 1.9600 |
| $95 \%$ | 2.0537 |
| $96 \%$ | 2.3263 |
| $98 \%$ | 2.5758 |

UNIT NORMAL DISTRIBUTION

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | $f(x)$ | $F(x)$ | $\boldsymbol{R}(\boldsymbol{x})$ | 2R(x) | $W(x)$ |
| 0.0 | 0.3989 | 0.5000 | 0.5000 | 1.0000 | 0.0000 |
| 0.1 | 0.3970 | 0.5398 | 0.4602 | 0.9203 | 0.0797 |
| 0.2 | 0.3910 | 0.5793 | 0.4207 | 0.8415 | 0.1585 |
| 0.3 | 0.3814 | 0.6179 | 0.3821 | 0.7642 | 0.2358 |
| 0.4 | 0.3683 | 0.6554 | 0.3446 | 0.6892 | 0.3108 |
| 0.5 | 0.3521 | 0.6915 | 0.3085 | 0.6171 | 0.3829 |
| 0.6 | 0.3332 | 0.7257 | 0.2743 | 0.5485 | 0.4515 |
| 0.7 | 0.3123 | 0.7580 | 0.2420 | 0.4839 | 0.5161 |
| 0.8 | 0.2897 | 0.7881 | 0.2119 | 0.4237 | 0.5763 |
| 0.9 | 0.2661 | 0.8159 | 0.1841 | 0.3681 | 0.6319 |
| 1.0 | 0.2420 | 0.8413 | 0.1587 | 0.3173 | 0.6827 |
| 1.1 | 0.2179 | 0.8643 | 0.1357 | 0.2713 | 0.7287 |
| 1.2 | 0.1942 | 0.8849 | 0.1151 | 0.2301 | 0.7699 |
| 1.3 | 0.1714 | 0.9032 | 0.0968 | 0.1936 | 0.8064 |
| 1.4 | 0.1497 | 0.9192 | 0.0808 | 0.1615 | 0.8385 |
| 1.5 | 0.1295 | 0.9332 | 0.0668 | 0.1336 | 0.8664 |
| 1.6 | 0.1109 | 0.9452 | 0.0548 | 0.1096 | 0.8904 |
| 1.7 | 0.0940 | 0.9554 | 0.0446 | 0.0891 | 0.9109 |
| 1.8 | 0.0790 | 0.9641 | 0.0359 | 0.0719 | 0.9281 |
| 1.9 | 0.0656 | 0.9713 | 0.0287 | 0.0574 | 0.9426 |
| 2.0 | 0.0540 | 0.9772 | 0.0228 | 0.0455 | 0.9545 |
| 2.1 | 0.0440 | 0.9821 | 0.0179 | 0.0357 | 0.9643 |
| 2.2 | 0.0355 | 0.9861 | 0.0139 | 0.0278 | 0.9722 |
| 2.3 | 0.0283 | 0.9893 | 0.0107 | 0.0214 | 0.9786 |
| 2.4 | 0.0224 | 0.9918 | 0.0082 | 0.0164 | 0.9836 |
| 2.5 | 0.0175 | 0.9938 | 0.0062 | 0.0124 | 0.9876 |
| 2.6 | 0.0136 | 0.9953 | 0.0047 | 0.0093 | 0.9907 |
| 2.7 | 0.0104 | 0.9965 | 0.0035 | 0.0069 | 0.9931 |
| 2.8 | 0.0079 | 0.9974 | 0.0026 | 0.0051 | 0.9949 |
| 2.9 | 0.0060 | 0.9981 | 0.0019 | 0.0037 | 0.9963 |
| 3.0 | 0.0044 | 0.9987 | 0.0013 | 0.0027 | 0.9973 |
| Fractiles |  |  |  |  |  |
| 1.2816 | 0.1755 | 0.9000 | 0.1000 | 0.2000 | 0.8000 |
| 1.6449 | 0.1031 | 0.9500 | 0.0500 | 0.1000 | 0.9000 |
| 1.9600 | 0.0584 | 0.9750 | 0.0250 | 0.0500 | 0.9500 |
| 2.0537 | 0.0484 | 0.9800 | 0.0200 | 0.0400 | 0.9600 |
| 2.3263 | 0.0267 | 0.9900 | 0.0100 | 0.0200 | 0.9800 |
| 2.5758 | 0.0145 | 0.9950 | 0.0050 | 0.0100 | 0.9900 |



VALUES OF $\boldsymbol{t}_{\boldsymbol{\alpha}, \boldsymbol{n}}$
$\mathrm{t}_{\alpha, \mathrm{n}}$

| $n$ | $\alpha=0.10$ | $\alpha=0.05$ | $\alpha=0.025$ | $\alpha=0.01$ | $\alpha=0.005$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 1 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 2 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 3 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 4 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 6 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 7 |
| 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 8 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 9 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 10 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 11 |
| 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 12 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 13 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 14 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 15 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 16 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 17 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 18 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 19 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 20 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 21 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 22 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 23 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 24 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 25 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 26 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 27 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 28 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 29 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | $\infty$ |


| CRITICAL VALUES OF THE $\boldsymbol{F}$ DISTRIBUTION |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| For a particular combination of numerator and denominator degrees of freedom, entry represents the critical values of $\boldsymbol{F}$ corresponding to a specified upper tail area $(\alpha)$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denominator | Numerator $d f_{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $d f_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | $\infty$ |
| 1 | 161.4 | 199.5 | 215.7 | 224.6 | 230.2 | 234.0 | 236.8 | 238.9 | 240.5 | 241.9 | 243.9 | 245.9 | 248.0 | 249.1 | 250.1 | 251.1 | 252.2 | 253.3 | 254.3 |
| 2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.43 | 19.45 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50 |
| 3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.70 | 8.66 | 8.64 | 8.62 | 8.59 | 8.57 | 8.55 | 8.53 |
| 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.86 | 5.80 | 5.77 | 5.75 | 5.72 | 5.69 | 5.66 | 5.63 |
| 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.62 | 4.56 | 4.53 | 4.50 | 4.46 | 4.43 | 4.40 | 4.36 |
| 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.94 | 3.87 | 3.84 | 3.81 | 3.77 | 3.74 | 3.70 | 3.67 |
| 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.51 | 3.44 | 3.41 | 3.38 | 3.34 | 3.30 | 3.27 | 3.23 |
| 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.22 | 3.15 | 3.12 | 3.08 | 3.04 | 3.01 | 2.97 | 2.93 |
| 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.01 | 2.94 | 2.90 | 2.86 | 2.83 | 2.79 | 2.75 | 2.71 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.85 | 2.77 | 2.74 | 2.70 | 2.66 | 2.62 | 2.58 | 2.54 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.79 | 2.72 | 2.65 | 2.61 | 2.57 | 2.53 | 2.49 | 2.45 | 2.40 |
| 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.62 | 2.54 | 2.51 | 2.47 | 2.43 | 2.38 | 2.34 | 2.30 |
| 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.60 | 2.53 | 2.46 | 2.42 | 2.38 | 2.34 | 2.30 | 2.25 | 2.21 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.53 | 2.46 | 2.39 | 2.35 | 2.31 | 2.27 | 2.22 | 2.18 | 2.13 |
| 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.40 | 2.33 | 2.29 | 2.25 | 2.20 | 2.16 | 2.11 | 2.07 |
| 16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.42 | 2.35 | 2.28 | 2.24 | 2.19 | 2.15 | 2.11 | 2.06 | 2.01 |
| 17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.38 | 2.31 | 2.23 | 2.19 | 2.15 | 2.10 | 2.06 | 2.01 | 1.96 |
| 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.34 | 2.27 | 2.19 | 2.15 | 2.11 | 2.06 | 2.02 | 1.97 | 1.92 |
| 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.31 | 2.23 | 2.16 | 2.11 | 2.07 | 2.03 | 1.98 | 1.93 | 1.88 |
| 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.20 | 2.12 | 2.08 | 2.04 | 1.99 | 1.95 | 1.90 | 1.84 |
| 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.25 | 2.18 | 2.10 | 2.05 | 2.01 | 1.96 | 1.92 | 1.87 | 1.81 |
| 22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 | 2.23 | 2.15 | 2.07 | 2.03 | 1.98 | 1.94 | 1.89 | 1.84 | 1.78 |
| 23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 | 2.20 | 2.13 | 2.05 | 2.01 | 1.96 | 1.91 | 1.86 | 1.81 | 1.76 |
| 24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.18 | 2.11 | 2.03 | 1.98 | 1.94 | 1.89 | 1.84 | 1.79 | 1.73 |
| 25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 | 2.16 | 2.09 | 2.01 | 1.96 | 1.92 | 1.87 | 1.82 | 1.77 | 1.71 |
| 26 | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 | 2.15 | 2.07 | 1.99 | 1.95 | 1.90 | 1.85 | 1.80 | 1.75 | 1.69 |
| 27 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 | 2.13 | 2.06 | 1.97 | 1.93 | 1.88 | 1.84 | 1.79 | 1.73 | 1.67 |
| 28 | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 | 2.12 | 2.04 | 1.96 | 1.91 | 1.87 | 1.82 | 1.77 | 1.71 | 1.65 |
| 29 | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 | 2.10 | 2.03 | 1.94 | 1.90 | 1.85 | 1.81 | 1.75 | 1.70 | 1.64 |
| 30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.09 | 2.01 | 1.93 | 1.89 | 1.84 | 1.79 | 1.74 | 1.68 | 1.62 |
| 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.00 | 1.92 | 1.84 | 1.79 | 1.74 | 1.69 | 1.64 | 1.58 | 1.51 |
| 60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.92 | 1.84 | 1.75 | 1.70 | 1.65 | 1.59 | 1.53 | 1.47 | 1.39 |
| 120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.17 | 2.09 | 2.02 | 1.96 | 1.91 | 1.83 | 1.75 | 1.66 | 1.61 | 1.55 | 1.50 | 1.43 | 1.35 | 1.25 |
| $\infty$ | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 | 1.75 | 1.67 | 1.57 | 1.52 | 1.46 | 1.39 | 1.32 | 1.22 | 1.00 |


| CRITICAL VALUES OF $\boldsymbol{X}^{\mathbf{2}}$ DISTRIBUTION |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Degrees of Freedom | $X^{2} .995$ | $X^{2} .990$ | $X^{2}{ }_{975}$ | $X^{2}{ }_{950}$ | $X^{2}{ }_{900}$ | $X^{2}{ }_{100}$ | $X^{2}$.050 | $X^{2} .025$ | $X^{2}{ }_{.010}$ | $X^{2}{ }_{.005}$ |
| 1 | 0.0000393 | 0.0001571 | 0.0009821 | 0.0039321 | 0.0157908 | 2.70554 | 3.84146 | 5.02389 | 6.63490 | 7.87944 |
| 2 | 0.0100251 | 0.0201007 | 0.0506356 | 0.102587 | 0.210720 | 4.60517 | 5.99147 | 7.37776 | 9.21034 | 10.5966 |
| 3 | 0.0717212 | 0.114832 | 0.215795 | 0.351846 | 0.584375 | 6.25139 | 7.81473 | 9.34840 | 11.3449 | 12.8381 |
| 4 | 0.206990 | 0.297110 | 0.484419 | 0.710721 | 1.063623 | 7.77944 | 9.48773 | 11.1433 | 13.2767 | 14.8602 |
| 5 | 0.411740 | 0.554300 | 0.831211 | 1.145476 | 1.61031 | 9.23635 | 11.0705 | 12.8325 | 15.0863 | 16.7496 |
| 6 | 0.675727 | 0.872085 | 1.237347 | 1.63539 | 2.20413 | 10.6446 | 12.5916 | 14.4494 | 16.8119 | 18.5476 |
| 7 | 0.989265 | 1.239043 | 1.68987 | 2.16735 | 2.83311 | 12.0170 | 14.0671 | 16.0128 | 18.4753 | 20.2777 |
| 8 | 1.344419 | 1.646482 | 2.17973 | 2.73264 | 3.48954 | 13.3616 | 15.5073 | 17.5346 | 20.0902 | 21.9550 |
| 9 | 1.734926 | 2.087912 | 2.70039 | 3.32511 | 4.16816 | 14.6837 | 16.9190 | 19.0228 | 21.6660 | 23.5893 |
| 10 | 2.15585 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 15.9871 | 18.3070 | 20.4831 | 23.2093 | 25.1882 |
| 11 | 2.60321 | 3.05347 | 3.81575 | 4.57481 | 5.57779 | 17.2750 | 19.6751 | 21.9200 | 24.7250 | 26.7569 |
| 12 | 3.07382 | 3.57056 | 4.40379 | 5.22603 | 6.30380 | 18.5494 | 21.0261 | 23.3367 | 26.2170 | 28.2995 |
| 13 | 3.56503 | 4.10691 | 5.00874 | 5.89186 | 7.04150 | 19.8119 | 22.3621 | 24.7356 | 27.6883 | 29.8194 |
| 14 | 4.07468 | 4.66043 | 5.62872 | 6.57063 | 7.78953 | 21.0642 | 23.6848 | 26.1190 | 29.1413 | 31.3193 |
| 15 | 4.60094 | 5.22935 | 6.26214 | 7.26094 | 8.54675 | 22.3072 | 24.9958 | 27.4884 | 30.5779 | 32.8013 |
| 16 | 5.14224 | 5.81221 | 6.90766 | 7.96164 | 9.31223 | 23.5418 | 26.2962 | 28.8454 | 31.9999 | 34.2672 |
| 17 | 5.69724 | 6.40776 | 7.56418 | 8.67176 | 10.0852 | 24.7690 | 27.5871 | 30.1910 | 33.4087 | 35.7185 |
| 18 | 6.26481 | 7.01491 | 8.23075 | 9.39046 | 10.8649 | 25.9894 | 28.8693 | 31.5264 | 34.8053 | 37.1564 |
| 19 | 6.84398 | 7.63273 | 8.90655 | 10.1170 | 11.6509 | 27.2036 | 30.1435 | 32.8523 | 36.1908 | 38.5822 |
| 20 | 7.43386 | 8.26040 | 9.59083 | 10.8508 | 12.4426 | 28.4120 | 31.4104 | 34.1696 | 37.5662 | 39.9968 |
| 21 | 8.03366 | 8.89720 | 10.28293 | 11.5913 | 13.2396 | 29.6151 | 32.6705 | 35.4789 | 38.9321 | 41.4010 |
| 22 | 8.64272 | 9.54249 | 10.9823 | 12.3380 | 14.0415 | 30.8133 | 33.9244 | 36.7807 | 40.2894 | 42.7956 |
| 23 | 9.26042 | 10.19567 | 11.6885 | 13.0905 | 14.8479 | 32.0069 | 35.1725 | 38.0757 | 41.6384 | 44.1813 |
| 24 | 9.88623 | 10.8564 | 12.4011 | 13.8484 | 15.6587 | 33.1963 | 36.4151 | 39.3641 | 42.9798 | 45.5585 |
| 25 | 10.5197 | 11.5240 | 13.1197 | 14.6114 | 16.4734 | 34.3816 | 37.6525 | 40.6465 | 44.3141 | 46.9278 |
| 26 | 11.1603 | 12.1981 | 13.8439 | 15.3791 | 17.2919 | 35.5631 | 38.8852 | 41.9232 | 45.6417 | 48.2899 |
| 27 | 11.8076 | 12.8786 | 14.5733 | 16.1513 | 18.1138 | 36.7412 | 40.1133 | 43.1944 | 46.9630 | 49.6449 |
| 28 | 12.4613 | 13.5648 | 15.3079 | 16.9279 | 18.9392 | 37.9159 | 41.3372 | 44.4607 | 48.2782 | 50.9933 |
| 29 | 13.1211 | 14.2565 | 16.0471 | 17.7083 | 19.7677 | 39.0875 | 42.5569 | 45.7222 | 49.5879 | 52.3356 |
| 30 | 13.7867 | 14.9535 | 16.7908 | 18.4926 | 20.5992 | 40.2560 | 43.7729 | 46.9792 | 50.8922 | 53.6720 |
| 40 | 20.7065 | 22.1643 | 24.4331 | 26.5093 | 29.0505 | 51.8050 | 55.7585 | 59.3417 | 63.6907 | 66.7659 |
| 50 | 27.9907 | 29.7067 | 32.3574 | 34.7642 | 37.6886 | 63.1671 | 67.5048 | 71.4202 | 76.1539 | 79.4900 |
| 60 | 35.5346 | 37.4848 | 40.4817 | 43.1879 | 46.4589 | 74.3970 | 79.0819 | 83.2976 | 88.3794 | 91.9517 |
| 70 | 43.2752 | 45.4418 | 48.7576 | 51.7393 | 55.3290 | 85.5271 | 90.5312 | 95.0231 | 100.425 | 104.215 |
| 80 | 51.1720 | 53.5400 | 57.1532 | 60.3915 | 64.2778 | 96.5782 | 101.879 | 106.629 | 112.329 | 116.321 |
| 90 | 59.1963 | 61.7541 | 65.6466 | 69.1260 | 73.2912 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
| 100 | 67.3276 | 70.0648 | 74.2219 | 77.9295 | 82.3581 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |
| Source: From Thompson, C. M. | ables of the Perc | Points of the $X^{2}$ - | ution," Biometri | 941, 32, 188-189. | duced by permis | f the Biometrik |  |  |  |  |

## STATICS

## FORCE

A force is a vector quantity. It is defined when its (1) magnitude, (2) point of application, and (3) direction are known.

## RESULTANT (TWO DIMENSIONS)

The resultant, $F$, of $n$ forces with components $F_{x, i}$ and $F_{y, i}$ has the magnitude of

$$
F=\left[\left(\sum_{i=1}^{n} F_{x, i}\right)^{2}+\left(\sum_{i=1}^{n} F_{y, i}\right)^{2}\right]^{1 / 2}
$$

The resultant direction with respect to the $x$-axis using fourquadrant angle functions is

$$
\theta=\arctan \left(\sum_{i=1}^{n} F_{y, i} / \sum_{i=1}^{n} F_{x, i}\right)
$$

The vector form of a force is

$$
\boldsymbol{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}
$$

## RESOLUTION OF A FORCE

$F_{x}=F \cos \theta_{x} ; F_{y}=F \cos \theta_{y} ; F_{z}=F \cos \theta_{z}$
$\cos \theta_{x}=F_{x} / F ; \cos \theta_{y}=F_{y} / F ; \cos \theta_{z}=F_{z} / F$
Separating a force into components (geometry of force is known $R=\sqrt{x^{2}+y^{2}+z^{2}}$ )
$F_{x}=(x / R) F ; \quad F_{y}=(y / R) \mathrm{F} ; \quad F_{z}=(z / R) F$

## MOMENTS (COUPLES)

A system of two forces that are equal in magnitude, opposite in direction, and parallel to each other is called a couple.

A moment $\boldsymbol{M}$ is defined as the cross product of the radius vector $\boldsymbol{r}$ and the force $\boldsymbol{F}$ from a point to the line of action of the force.

$$
\boldsymbol{M}=\boldsymbol{r} \times \boldsymbol{F} ; \quad \begin{aligned}
& M_{x}=y F_{z}-z F_{y}, \\
& \\
& M_{y}=z F_{x}-x F_{z}, \text { and } \\
& \\
& M_{z}=x F_{y}-y F_{x} .
\end{aligned}
$$

## SYSTEMS OF FORCES

$$
\begin{aligned}
& \boldsymbol{F}=\sum \boldsymbol{F}_{n} \\
& \boldsymbol{M}=\sum\left(\boldsymbol{r}_{n} \times \boldsymbol{F}_{n}\right)
\end{aligned}
$$

## Equilibrium Requirements

$$
\begin{aligned}
& \Sigma \boldsymbol{F}_{n}=0 \\
& \Sigma \boldsymbol{M}_{n}=0
\end{aligned}
$$

## CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES

Formulas for centroids, moments of inertia, and first moment of areas are presented in the MATHEMATICS section for continuous functions. The following discrete formulas are for defined regular masses, areas, lengths, and volumes:

$$
\boldsymbol{r}_{c}=\Sigma m_{n} \boldsymbol{r}_{n} / \Sigma m_{n}, \text { where }
$$

$m_{n}=$ the mass of each particle making up the system,
$\boldsymbol{r}_{n}=$ the radius vector to each particle from a selected reference point, and
$\boldsymbol{r}_{c}=$ the radius vector to the center of the total mass from the selected reference point.
The moment of area $\left(M_{a}\right)$ is defined as

$$
\begin{aligned}
& M_{a y}=\sum x_{n} a_{n} \\
& M_{a x}=\sum y_{n} a_{n} \\
& M_{a z}=\sum z_{n} a_{n}
\end{aligned}
$$

The centroid of area is defined as

$$
\left.\begin{array}{l}
x_{a c}=M_{a y} / A \\
y_{a c}=M_{a x} / A \\
z_{a c}=M_{a z} / A
\end{array}\right\} \begin{aligned}
& \text { with respect to center of } \\
& \text { the coordinate system }
\end{aligned}
$$

where $A=\Sigma a_{n}$
The centroid of a line is defined as

$$
\begin{aligned}
& x_{l c}=\left(\sum x_{n} l_{n}\right) / L, \text { where } L=\sum l_{n} \\
& y_{l c}=\left(\sum y_{n} l_{\mathrm{n}}\right) / L \\
& z_{l c}=\left(\sum z_{n} l_{n}\right) / L
\end{aligned}
$$

The centroid of volume is defined as

$$
\begin{aligned}
& x_{v c}=\left(\sum x_{n} v_{n}\right) / V, \text { where } V=\Sigma v_{n} \\
& y_{v c}=\left(\sum y_{n} v_{n}\right) / V \\
& z_{v c}=\left(\sum z_{n} v_{n}\right) / V
\end{aligned}
$$

## MOMENT OF INERTIA

The moment of inertia, or the second moment of area, is defined as

$$
\begin{aligned}
I_{y} & =\int x^{2} d A \\
I_{x} & =\int y^{2} d A
\end{aligned}
$$

The polar moment of inertia $J$ of an area about a point is equal to the sum of the moments of inertia of the area about any two perpendicular axes in the area and passing through the same point.
$I_{z}=J=I_{y}+I_{x}=\int\left(x^{2}+y^{2}\right) d A$
$=r_{p}^{2} A$, where
$r_{p}=$ the radius of gyration (see page 25 ).

## Moment of Inertia Transfer Theorem

The moment of inertia of an area about any axis is defined as the moment of inertia of the area about a parallel centroidal axis plus a term equal to the area multiplied by the square of the perpendicular distance $d$ from the centroidal axis to the axis in question.

$$
\begin{aligned}
& I_{x}^{\prime}=I_{x_{c}}+d_{x}^{2} A \\
& I_{y}^{\prime}=I_{y_{c}}+d_{y}^{2} A, \text { where }
\end{aligned}
$$

$d_{x}, d_{y}=$ distance between the two axes in question,
$I_{x_{c}}, I_{y_{c}}=$ the moment of inertia about the centroidal axis, and $I_{x}^{\prime}, I_{y}^{\prime}=$ the moment of inertia about the new axis.

## Radius of Gyration

The radius of gyration $r_{p}, r_{x}, r_{y}$ is the distance from a reference axis at which all of the area can be considered to be concentrated to produce the moment of inertia.

$$
r_{x}=\sqrt{I_{x} / A} ; \quad r_{y}=\sqrt{I_{y} / A} ; \quad r_{p}=\sqrt{J / A}
$$

## Product of Inertia

The product of inertia ( $I_{x y}$, etc.) is defined as:
$I_{x y}=\int_{x y d A}$, with respect to the $x y$-coordinate system,
$I_{x z}=\int_{x z d A}$, with respect to the $x z$-coordinate system, and
$I_{y z}=\int y z d A$, with respect to the $y z$-coordinate system.
The transfer theorem also applies:
$I_{x y}^{\prime}=I_{x_{c} y_{c}}+d_{x} d_{y} A$ for the $x y$-coordinate system, etc.
where
$d_{x}=x$-axis distance between the two axes in question, and
$d_{y}=y$-axis distance between the two axes in question.

## FRICTION

The largest frictional force is called the limiting friction. Any further increase in applied forces will cause motion.

$$
F \leq \mu N \text {, where }
$$

$F=$ friction force,
$\mu=$ coefficient of static friction, and
$N=$ normal force between surfaces in contact.

## SCREW THREAD (also see MECHANICAL ENGINEERING section)

For a screw-jack, square thread,

$$
M=\operatorname{Pr} \tan (\alpha \pm \phi), \text { where }
$$

+ is for screw tightening,
- is for screw loosening,
$M=$ external moment applied to axis of screw,
$P=$ load on jack applied along and on the line of the axis,
$r=$ the mean thread radius,
$\alpha=$ the pitch angle of the thread, and
$\mu=\tan \phi=$ the appropriate coefficient of friction.


## BELT FRICTION

$F_{1}=F_{2} e^{\mu \theta}$, where
$F_{1}=$ force being applied in the direction of impending motion,
$F_{2}=$ force applied to resist impending motion,
$\mu=$ coefficient of static friction, and
$\theta=$ the total angle of contact between the surfaces expressed in radians.

## STATICALLY DETERMINATE TRUSS

## Plane Truss

A plane truss is a rigid framework satisfying the following conditions:

1. The members of the truss lie in the same plane.
2. The members are connected at their ends by frictionless pins.
3. All of the external loads lie in the plane of the truss and are applied at the joints only.
4. The truss reactions and member forces can be determined using the equations of equilibrium.
$\Sigma \boldsymbol{F}=0 ; \Sigma \boldsymbol{M}=0$
5. A truss is statically indeterminate if the reactions and member forces cannot be solved with the equations of equilibrium.

## Plane Truss: Method of Joints

The method consists of solving for the forces in the members by writing the two equilibrium equations for each joint of the truss.

$$
\Sigma F_{V}=0 \text { and } \Sigma F_{H}=0, \text { where }
$$

$F_{H}=$ horizontal forces and member components and
$F_{V}=$ vertical forces and member components.

## Plane Truss: Method of Sections

The method consists of drawing a free-body diagram of a portion of the truss in such a way that the unknown truss member force is exposed as an external force.

## CONCURRENT FORCES

A concurrent-force system is one in which the lines of action of the applied forces all meet at one point. A twoforce body in static equilibrium has two applied forces that are equal in magnitude, opposite in direction, and collinear. A three-force body in static equilibrium has three applied forces whose lines of action meet at a point. As a consequence, if the direction and magnitude of two of the three forces are known, the direction and magnitude of the third can be determined.

| Figure | Area \& Centroid | Area Moment of Inertia | (Radius of Gyration) ${ }^{\mathbf{2}}$ | Product of Inertia |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & A=b h / 2 \\ & x_{c}=2 b / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=b h^{3} / 36 \\ & I_{y_{c}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 4 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 2 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=A b h / 36=b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 8 \end{aligned}$ |
|  | $\begin{aligned} & A=b h / 2 \\ & x_{c}=b / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{array}{ll} I_{x_{c}} & =b h^{3} / 36 \\ I_{y_{c}} & =b^{3} h / 36 \\ I_{x} & =b h^{3} / 12 \\ I_{y} & =b^{3} h / 12 \end{array}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 6 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=-A b h / 36=-b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 12=b^{2} h^{2} / 24 \end{aligned}$ |
|  | $\begin{aligned} & A=b h / 2 \\ & x_{c}=(a+b) / 3 \\ & y_{c}=h / 3 \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =b h^{3} / 36 \\ I_{y_{c}} & =\left[b h\left(b^{2}-a b+a^{2}\right)\right] / 36 \\ I_{x} & =b h^{3} / 12 \\ I_{y} & =\left[b h\left(b^{2}+a b+a^{2}\right)\right] / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=\left(b^{2}-a b+a^{2}\right) / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=\left(b^{2}+a b+a^{2}\right) / 6 \end{aligned}$ | $\begin{aligned} I_{x_{c} y_{c}} & =[A h(2 a-b)] / 36 \\ & =\left[b h^{2}(2 a-b)\right] / 72 \\ I_{x y} & =[\operatorname{Ah}(2 a+b)] / 12 \\ & =\left[b h^{2}(2 a+b)\right] / 24 \end{aligned}$ |
|  | $\begin{aligned} & A=b h \\ & x_{c}=b / 2 \\ & y_{c}=h / 2 \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =b h^{3} / 12 \\ I_{y_{c}} & =b^{3} h / 12 \\ I_{x} & =b h^{3} / 3 \\ I_{y} & =b^{3} h / 3 \\ J & =\left[b h\left(b^{2}+h^{2}\right)\right] / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 12 \\ & r_{y_{c}}^{2}=b^{2} / 12 \\ & r_{x}^{2}=h^{2} / 3 \\ & r_{y}^{2}=b^{2} / 3 \\ & r_{p}^{2}=\left(b^{2}+h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 4 \end{aligned}$ |
|  | $\begin{aligned} & A=h(a+b) / 2 \\ & y_{c}=\frac{h(2 a+b)}{3(a+b)} \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =\frac{h^{3}\left(a^{2}+4 a b+b^{2}\right)}{36(a+b)} \\ I_{x} & =\frac{h^{3}(3 a+b)}{12} \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=\frac{h^{2}\left(a^{2}+4 a b+b^{2}\right)}{18(a+b)} \\ & r_{x}^{2}=\frac{h^{2}(3 a+b)}{6(a+b)} \end{aligned}$ |  |
|  | $\begin{aligned} & A=a b \sin \theta \\ & x_{c}=(b+a \cos \theta) / 2 \\ & y_{c}=(a \sin \theta) / 2 \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =\left(a^{3} b \sin ^{3} \theta\right) / 12 \\ I_{y_{c}} & =\left[a b \sin \theta\left(b^{2}+a^{2} \cos ^{2} \theta\right)\right] / 12 \\ I_{x} & =\left(a^{3} b \sin ^{3} \theta\right) / 3 \\ I_{y} & =\left[a b \sin \theta(b+a \cos \theta)^{2}\right] / 3 \\ & \quad-\left(a^{2} b^{2} \sin \theta \cos \theta\right) / 6 \end{aligned}$ | $\begin{aligned} r_{x_{c}}^{2} & =(a \sin \theta)^{2} / 12 \\ r_{y_{c}}^{2} & =\left(b^{2}+a^{2} \cos ^{2} \theta\right) / 12 \\ r_{x}^{2} & =(a \sin \theta)^{2} / 3 \\ r_{y}^{2} & =(b+a \cos \theta)^{2} / 3 \\ & \quad-(a b \cos \theta) / 6 \end{aligned}$ | $I_{x_{c} y_{c}}=\left(a^{3} b \sin ^{2} \theta \cos \theta\right) / 12$ |


| Figure | Area \& Centroid | Area Moment of Inertia | (Radius of Gyration) ${ }^{\mathbf{2}}$ | Product of Inertia |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & A=\pi a^{2} \\ & x_{c}=a \\ & y_{c}=a \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi a^{4} / 4 \\ & I_{x}=I_{y}=5 \pi a^{4} / 4 \\ & J=\pi a^{4} / 2 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=r_{y}^{2}=5 a^{2} / 4 \\ & r_{p}^{2}=a^{2} / 2 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A a^{2} \end{aligned}$ |
|  | $\begin{aligned} & A=\pi\left(a^{2}-b^{2}\right) \\ & x_{c}=a \\ & y_{c}=a \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi\left(a^{4}-b^{4}\right) / 4 \\ & I_{x}=I_{y}=\frac{5 \pi a^{4}}{4}-\pi a^{2} b^{2}-\frac{\pi b^{4}}{4} \\ & J=\pi\left(a^{4}-b^{4}\right) / 2 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=\left(a^{2}+b^{2}\right) / 4 \\ & r_{x}^{2}=r_{y}^{2}=\left(5 a^{2}+b^{2}\right) / 4 \\ & r_{p}^{2}=\left(a^{2}+b^{2}\right) / 2 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A a^{2} \\ & \quad=\pi a^{2}\left(a^{2}-b^{2}\right) \end{aligned}$ |
|  | $\begin{aligned} & A=\pi a^{2} / 2 \\ & x_{c}=a \\ & y_{c}=4 a /(3 \pi) \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=\frac{a^{4}\left(9 \pi^{2}-64\right)}{72 \pi} \\ & I_{y_{c}}=\pi a^{4} / 8 \\ & I_{x}=\pi a^{4} / 8 \\ & I_{y}=5 \pi a^{4} / 8 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=\frac{a^{2}\left(9 \pi^{2}-64\right)}{36 \pi^{2}} \\ & r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=a^{2} / 4 \\ & r_{y}^{2}=5 a^{2} / 4 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=2 a^{2} / 3 \end{aligned}$ |
|  | $\begin{aligned} & A=a^{2} \theta \\ & x_{c}=\frac{2 a}{3} \frac{\sin \theta}{\theta} \\ & y_{c}=0 \end{aligned}$ | $\begin{aligned} & I_{x}=a^{4}(\theta-\sin \theta \cos \theta) / 4 \\ & I_{y}=a^{4}(\theta+\sin \theta \cos \theta) / 4 \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4} \frac{(\theta-\sin \theta \cos \theta)}{\theta} \\ & r_{y}^{2}=\frac{a^{2}}{4} \frac{(\theta+\sin \theta \cos \theta)}{\theta} \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$ |
|  | $\begin{aligned} & A=a^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right) \\ & x_{c}=\frac{2 a}{3} \frac{\sin ^{3} \theta}{\theta-\sin \theta \cos \theta} \\ & y_{c}=0 \end{aligned}$ | $\begin{aligned} & I_{x}=\frac{A a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & I_{y}=\frac{A a^{2}}{4}\left[1+\frac{2 \sin ^{3} \theta \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & r_{y}^{2}=\frac{a^{2}}{4}\left[1+\frac{2 \sin ^{3} \theta \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$ |


| Figure | Area \& Centroid | Area Moment of Inertia | (Radius of Gyration) ${ }^{\mathbf{2}}$ | Product of Inertia |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & A=4 a b / 3 \\ & x_{c}=3 a / 5 \\ & y_{c}=0 \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=I_{x}=4 a b^{3} / 15 \\ & I_{y_{c}}=16 a^{3} b / 175 \\ & I_{y}=4 a^{3} b / 7 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=r_{x}^{2}=b^{2} / 5 \\ & r_{y_{c}}^{2}=12 a^{2} / 175 \\ & r_{y}^{2}=3 a^{2} / 7 \end{aligned}$ | $\begin{aligned} & I_{x_{x} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$ |
|  <br> HALF A PARABOLA | $\begin{aligned} & A=2 a b / 3 \\ & x_{c}=3 a / 5 \\ & y_{c}=3 b / 8 \end{aligned}$ | $\begin{aligned} & I_{x}=2 a b^{3} / 15 \\ & I_{y}=2 b a^{3} / 7 \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=b^{2} / 5 \\ & r_{y}^{2}=3 a^{2} / 7 \end{aligned}$ | $I_{x y}=A a b / 4=a^{2} b^{2}$ |
| $\mathrm{n}^{\text {m }}$ DEGREE PARABOLA | $\begin{aligned} & A=b h /(n+1) \\ & x_{c}=\frac{n+1}{n+2} b \\ & y_{c}=\frac{h}{2} \frac{n+1}{2 n+1} \end{aligned}$ | $\begin{aligned} & I_{x}=\frac{b h^{3}}{3(3 n+1)} \\ & I_{y}=\frac{h b^{3}}{n+3} \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=\frac{h^{2}(n+1)}{3(3 n+1)} \\ & r_{y}^{2}=\frac{n+1}{n+3} b^{2} \end{aligned}$ |  |
|  <br> $\mathrm{n}^{\text {th }}$ DEGREE PARABOLA | $\left\{\begin{array}{l} A=\frac{n}{n+1} b h \\ x_{c}=\frac{n+1}{2 n+1} b \\ y_{c}=\frac{n+1}{2(n+2)} h \end{array}\right.$ | $\begin{aligned} & I_{x}=\frac{n}{3(n+3)} b h^{3} \\ & I_{y}=\frac{n}{3 n+1} b^{3} h \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=\frac{n+1}{3(n+1)} h^{2} \\ & r_{y}^{2}=\frac{n+1}{3 n+1} b^{2} \end{aligned}$ |  |

## DYNAMICS

## KINEMATICS

Kinematics is the study of motion without consideration of the mass of, or the forces acting on, the system. For particle motion, let $\boldsymbol{r}(\mathrm{t})$ be the position vector of the particle in an inertial reference frame. The velocity and acceleration of the particle are respectively defined as
$\boldsymbol{v}=d \boldsymbol{r} / d t$
$\boldsymbol{a}=d \mathbf{v} / d t$, where
$\boldsymbol{v}=$ the instantaneous velocity,
$\boldsymbol{a}=$ the instantaneous acceleration, and
$\mathrm{t}=$ time

## Cartesian Coordinates

$$
\begin{aligned}
\boldsymbol{r} & =x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \\
\boldsymbol{v} & =\dot{x} \boldsymbol{i}+\ddot{y} \dot{\boldsymbol{j}}+\dot{z} \boldsymbol{k} \\
\boldsymbol{a} & =\ddot{x} \boldsymbol{i}+\ddot{\boldsymbol{y}} \boldsymbol{j}+\ddot{z} \boldsymbol{k}, \quad \text { where } \\
\dot{x} & =d x / d t=v_{x}, \text { etc. } \\
\ddot{x} & =d^{2} x / d t^{2}=a_{x}, \text { etc. }
\end{aligned}
$$

## Radial and Transverse Components for Planar Motion



Unit vectors $\boldsymbol{e}_{\theta}$ and $\boldsymbol{e}_{r}$ are, respectively, normal to and collinear with the position vector $r$. Thus:

$$
\boldsymbol{r}=r \boldsymbol{e}_{\boldsymbol{r}}
$$

$\boldsymbol{v}=\dot{\boldsymbol{r}} \boldsymbol{e}_{\boldsymbol{r}}+r \dot{\theta} \boldsymbol{e}_{\theta}$
$\boldsymbol{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{\boldsymbol{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{e}_{\theta}$, where
$r=$ the radial distance
$\theta=$ the angle between the x-axis and $\boldsymbol{e}_{r}$,
$\dot{r}=d r / d t$, etc.
$\ddot{r}=d^{2} r / d t^{2}$, etc.

## Plane Circular Motion

A special case of transverse and radial components is for constant radius rotation about the origin, or plane circular motion.


Here the vector quantities are defined as

$$
\begin{aligned}
\boldsymbol{r} & =r \boldsymbol{e}_{\boldsymbol{r}} \\
\boldsymbol{v} & =r \omega \boldsymbol{e}_{t} \\
\boldsymbol{a} & =\left(-r \omega^{2}\right) \boldsymbol{e}_{\boldsymbol{r}}+r \alpha \boldsymbol{e}_{\boldsymbol{t}}, \quad \text { where } \\
r & =\text { the radius of the circle, and } \\
\theta & =\text { the angle between the } \mathrm{x} \text { and } \boldsymbol{e}_{\boldsymbol{r}} \text { axes }
\end{aligned}
$$

The magnitudes of the angular velocity and acceleration, respectively, are defined as

$$
\begin{aligned}
& \omega=\dot{\theta}, \quad \text { and } \\
& \alpha=\dot{\omega}=\ddot{\theta}
\end{aligned}
$$

Arc length, tangential velocity, and tangential acceleration, respectively, are

$$
\begin{aligned}
s & =r \theta, \\
v_{t} & =r \omega \\
a_{t} & =r \alpha
\end{aligned}
$$

The normal acceleration is given by

$$
a_{n}=r \omega^{2}
$$

## Normal and Tangential Components



Unit vectors $\boldsymbol{e}_{\boldsymbol{t}}$ and $\boldsymbol{e}_{\boldsymbol{n}}$ are, respectively, tangent and normal to the path with $\boldsymbol{e}_{\boldsymbol{n}}$ pointing to the center of curvature. Thus

$$
\begin{aligned}
& \boldsymbol{v}=v(t) \boldsymbol{e}_{\boldsymbol{t}} \\
& \boldsymbol{a}=a(t) \boldsymbol{e}_{\boldsymbol{t}}+\left(v_{t}^{2} / \rho\right) \boldsymbol{e}_{\boldsymbol{n}}, \quad \text { where } \\
& \rho=\text { instantaneous radius of curvature }
\end{aligned}
$$

## Constant Acceleration

The equations for the velocity and displacement when acceleration is a constant are given as

$$
\begin{aligned}
a(t) & =a_{0} \\
v(t) & =a_{0}\left(t-t_{0}\right)+v_{0} \\
s(t) & =a_{0}\left(t-t_{0}\right)^{2} / 2+v_{0}\left(t-t_{0}\right)+s_{0}, \quad \text { where } \\
s & =\text { distance along the line of travel } \\
s_{0} & =\text { displacement at time } \mathrm{t}_{0} \\
v & =\text { velocity along the direction of travel } \\
v_{0} & =\text { velocity at time } \mathrm{t}_{0} \\
a_{0} & =\text { constant acceleration } \\
t & =\text { time, and } \\
t_{0} & =\text { some initial time }
\end{aligned}
$$

For a free-falling body, $a_{0}=g$ (downward).
An additional equation for velocity as a function of position may be written as

$$
v^{2}=v_{0}^{2}+2 a_{0}\left(s-s_{0}\right)
$$

For constant angular acceleration, the equations for angular velocity and displacement are

$$
\begin{aligned}
& \quad \alpha(t)=\alpha_{0} \\
& \omega(t)=\alpha_{0}\left(t-t_{0}\right)+\omega_{0} \\
& \theta(t)=\alpha_{0}\left(t-t_{0}\right)^{2} / 2+\omega_{0}\left(t-t_{0}\right)+\theta_{0}, \quad \text { where } \\
& \theta=\text { angular displacement } \\
& \theta_{0}=\text { angular displacement at time } \mathrm{t}_{0} \\
& \omega=\text { angular velocity } \\
& \omega_{0}=\text { angular velocity at time } \mathrm{t}_{0} \\
& \alpha_{0}=\text { constant angular acceleration } \\
& t=\text { time, and } \\
& t_{0}=\text { some initial time }
\end{aligned}
$$

An additional equation for angular velocity as a function of angular position may be written as

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha_{0}\left(\theta-\theta_{0}\right)
$$

## Non-constant Acceleration

When non-constant acceleration, $a(t)$, is considered, the equations for the velocity and displacement may be obtained from

$$
\begin{aligned}
& v(t)=\int_{t_{o}}^{t} a(\tau) d \tau+v_{t_{0}} \\
& s(t)=\int_{t_{o}}^{t} v(\tau) d \tau+s_{t_{0}}
\end{aligned}
$$

For variable angular acceleration

$$
\begin{aligned}
& \omega(t)=\int_{t_{0}}^{t} \alpha(\tau) d \tau+\omega_{t_{0}} \\
& \theta(t)=\int_{t_{0}}^{t} \omega(\tau) d \tau+\theta_{t_{0}}
\end{aligned}
$$

## Projectile Motion



The equations for common projectile motion may be obtained from the constant acceleration equations as

$$
\begin{aligned}
a_{x} & =0 \\
v_{x} & =v_{0} \cos (\theta) \\
x & =v_{0} \cos (\theta) t+x_{0} \\
a_{y} & =-g \\
v_{y} & =-g t+v_{0} \sin (\theta) \\
y & =-g t^{2} / 2+v_{0} \sin (\theta) t+y_{0}
\end{aligned}
$$

## CONCEPT OF WEIGHT

$$
\begin{aligned}
& W=m g, \text { where } \\
& W=\text { weight, } \mathrm{N}(\mathrm{lbf}) \\
& m=\text { mass, } \mathrm{kg}\left(\mathrm{lbf}-\mathrm{sec}^{2} / \mathrm{ft}\right), \text { and } \\
& g=\text { local acceleration of gravity }, \mathrm{m} / \sec ^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)
\end{aligned}
$$

## KINETICS

Newton's second law for a particle is

$$
\sum \boldsymbol{F}=d(m \boldsymbol{v}) / d t, \text { where }
$$

$\sum \boldsymbol{F}=$ the sum of the applied forces acting on the particle,

$$
m=\text { the mass of the particle }
$$

$\boldsymbol{v}=$ the velocity of the particle

For constant mass,

$$
\sum \boldsymbol{F}=m d \boldsymbol{v} / d t=m \boldsymbol{a}
$$

## One-Dimensional Motion of a Particle (Constant Mass)

When motion only exists in a single dimension then, without loss of generality, it may be assumed to be in the $x$ direction, and

$$
a_{x}=F_{x} / m, \text { where }
$$

$F_{x}=$ the resultant of the applied forces which in general can depend on $t, x$, and $v_{x}$.

If $F_{x}$ only depends on $t$, then

$$
\begin{aligned}
a_{x}(t) & =F_{x}(t) / m \\
v_{x}(t) & =\int_{t_{0}}^{t} a_{x}(\tau) d \tau+v_{x t_{0}} \\
x(t) & =\int_{t_{0}}^{t} v_{x}(\tau) d \tau+x_{t_{0}}
\end{aligned}
$$

If the force is constant (i.e. independent of time, displacement, and velocity) then

$$
\begin{aligned}
a_{x} & =F_{x} / m \\
v_{x} & =a_{x}\left(t-t_{0}\right)+v_{x t_{0}} \\
x & =a_{x}\left(t-t_{0}\right)^{2} / 2+v_{x t_{0}}\left(t-t_{0}\right)+x_{t_{0}}
\end{aligned}
$$

## Normal and Tangential Kinetics for Planar Problems

When working with normal and tangential directions, the scalar equations may be written as

$$
\begin{aligned}
& \sum F_{t}=m a_{t}=m d v_{t} / d t \text { and } \\
& \sum F_{n}=m a_{n}=m\left(v_{t}^{2} / \rho\right)
\end{aligned}
$$

## Impulse And Momentum

Linear
Assuming constant mass, the equation of motion of a particle may be written as

$$
\begin{aligned}
m d \boldsymbol{v} / d t & =\boldsymbol{F} \\
m d \boldsymbol{v} & =\boldsymbol{F} d t
\end{aligned}
$$

For a system of particles, by integrating and summing over the number of particles, this may be expanded to

$$
\sum m_{i}\left(\boldsymbol{v}_{i}\right)_{t_{2}}=\sum m_{i}\left(\boldsymbol{v}_{i}\right)_{t_{1}}+\sum \int_{t_{1}}^{t_{2}} \boldsymbol{F}_{i} d t
$$

The term on the left side of the equation is the linear momentum of a system of particles at time $t_{2}$. The first term on the right side of the equation is the linear momentum of a system of particles at time $t_{1}$. The second term on the right side of the equation is the impulse of the force $\boldsymbol{F}$ from time $t_{1}$ to $t_{2}$. It should be noted that the above equation is a vector equation. Component scalar equations may be obtained by considering the momentum and force in a set of orthogonal directions.

## Angular Momentum or Moment of Momentum

The angular momentum or the moment of momentum about point 0 of a particle is defined as

$$
\begin{aligned}
& \mathbf{H}_{0}=\mathbf{r} \times m \mathbf{v}, \text { or } \\
& \mathbf{H}_{0}=I_{0} \boldsymbol{\omega}
\end{aligned}
$$

Taking the time derivative of the above, the equation of motion may be written as

$$
\dot{\mathbf{H}}_{0}=d\left(I_{0} \boldsymbol{\omega}\right) / d t=\mathbf{M}, \text { where }
$$

$\boldsymbol{M}$ is the moment applied to the particle. Now by integrating and summing over a system of any number of particles, this may be expanded to

$$
\sum\left(\boldsymbol{H}_{0 i}\right)_{t_{2}}=\sum\left(\boldsymbol{H}_{0 i}\right)_{t_{1}}+\sum \int_{t_{1}}^{t_{2}} \boldsymbol{M}_{0 i} d t
$$

The term on the left side of the equation is the angular momentum of a system of particles at time $t_{2}$. The first term on the right side of the equation is the angular momentum of a system of particles at time $t_{1}$. The second term on the right side of the equation is the angular impulse of the moment $\boldsymbol{M}$ from time $t_{1}$ to $t_{2}$.

## Work And Energy

Work $W$ is defined as

$$
W=\int \boldsymbol{F} \cdot d \boldsymbol{r}
$$

(For particle flow, see FLUID MECHANICS section.)

## Kinetic Energy

The kinetic energy of a particle is the work done by an external agent in accelerating the particle from rest to a velocity $\boldsymbol{v}$. Thus,

$$
T=m v^{2} / 2
$$

In changing the velocity from $\boldsymbol{v}_{1}$ to $\boldsymbol{v}_{2}$, the change in kinetic energy is

$$
T_{2}-T_{1}=m\left(v_{2}^{2}-v_{1}^{2}\right) / 2
$$

## Potential Energy

The work done by an external agent in the presence of a conservative field is termed the change in potential energy.
Potential Energy in Gravity Field

$$
U=m g h, \text { where }
$$

$h=$ the elevation above some specified datum.

## Elastic Potential Energy

For a linear elastic spring with modulus, stiffness, or spring constant, the force in the spring is

$$
F_{s}=k x \text {, where }
$$

$x=$ the change in length of the spring from the undeformed length of the spring.

The potential energy stored in the spring when compressed or extended by an amount $x$ is

$$
U=k x^{2} / 2
$$

In changing the deformation in the spring from position $x_{1}$ to $x_{2}$, the change in the potential energy stored in the spring is

$$
U_{2}-U_{1}=k\left(x_{2}^{2}-x_{1}^{2}\right) / 2
$$

## Principle of Work And Energy

If $T_{i}$ and $U_{i}$ are, respectively, the kinetic and potential energy of a particle at state $i$, then for conservative systems (no energy dissipation or gain), the law of conservation of energy is

$$
T_{2}+U_{2}=T_{1}+U_{1}
$$

If non-conservative forces are present, then the work done by these forces must be accounted for. Hence

$$
T_{2}+U_{2}=T_{1}+U_{1}+W_{1 \rightarrow 2}, \text { where }
$$

$W_{1 \rightarrow 2}=$ the work done by the non-conservative forces in moving between state 1 and state 2 . Care must be exercised during computations to correctly compute the algebraic sign of the work term. If the forces serve to increase the energy of the system, $W_{1 \rightarrow 2}$ is positive. If the forces, such as friction, serve to dissipate energy, $W_{1 \rightarrow 2}$ is negative.

## Impact

During an impact, momentum is conserved while energy may or may not be conserved. For direct central impact with no external forces

$$
m_{1} \boldsymbol{v}_{1}+m_{2} \boldsymbol{v}_{2}=m_{1} \boldsymbol{v}_{1}^{\prime}+m_{2} \boldsymbol{v}_{2}^{\prime}, \text { where }
$$

$m_{1}, m_{2}=$ the masses of the two bodies,
$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}=$ the velocities of the bodies just before impact, and
$\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}=$ the velocities of the bodies just after impact.
For impacts, the relative velocity expression is
$e=\frac{\left(v_{2}^{\prime}\right)_{n}-\left(v_{1}^{\prime}\right)_{n}}{\left(v_{1}\right)_{n}-\left(v_{2}\right)_{n}}$, where
$e=$ coefficient of restitution,
$\left(v_{i}\right)_{n}=$ the velocity normal to the plane of impact
just before impact, and
$\left(v_{i}^{\prime}\right)_{n}=$ the velocity normal to the plane of impact
just after impact

The value of $e$ is such that
$0 \leq e \leq 1$, with limiting values
$e=1$, perfectly elastic (energy conserved), and
$e=0$, perfectly plastic (no rebound)
Knowing the value of $e$, the velocities after the impact are given as

$$
\begin{aligned}
& \left(v_{1}^{\prime}\right)_{n}=\frac{m_{2}\left(v_{2}\right)_{n}(1+e)+\left(m_{1}-e m_{2}\right)\left(v_{1}\right)_{n}}{m_{1}+m_{2}} \\
& \left(v_{2}^{\prime}\right)_{n}=\frac{m_{1}\left(v_{1}\right)_{n}(1+e)-\left(e m_{1}-m_{2}\right)\left(v_{2}\right)_{n}}{m_{1}+m_{2}}
\end{aligned}
$$

## Friction

The Laws of Friction are

1. The total friction force $\boldsymbol{F}$ that can be developed is independent of the magnitude of the area of contact.
2. The total friction force $\boldsymbol{F}$ that can be developed is proportional to the normal force $N$.
3. For low velocities of sliding, the total frictional force that can be developed is practically independent of the velocity, although experiments show that the force $\boldsymbol{F}$ necessary to initiate slip is greater than that necessary to maintain the motion.

The formula expressing the Laws of Friction is
$F \leq \mu N$, where
$\mu=$ the coefficient of friction.

In general
$\boldsymbol{F}<\mu_{s} \boldsymbol{N}$, no slip occuring,
$\boldsymbol{F}=\mu_{s} \boldsymbol{N}$, at the point of impending slip, and
$\boldsymbol{F}=\mu_{k} \boldsymbol{N}$, when slip is occuring.
Here,
$\mu_{s}=$ the coefficient of static friction, and
$\mu_{k}=$ the coefficient of kinetic friction.

The coefficient of kinetic friction is often approximated as $75 \%$ of the coefficient of static friction.

## Mass Moment of Inertia

The definitions for the mass moments of inertia are

$$
\begin{aligned}
& I_{x}=\int y^{2} d m \\
& I_{y}=\int x^{2} d m, \text { and } \\
& I_{z}=\int\left(x^{2}+y^{2}\right) d m
\end{aligned}
$$

A table listing moment of inertia formulas for some standard shapes is at the end of this section.

## Parallel Axis Theorem

The mass moments of inertia may be calculated about any axis through the application of the above definitions. However, once the moments of inertia have been determined about an axis passing through a body's mass center, it may be transformed to another parallel axis. The transformation equation is

$$
I_{\text {new }}=I_{c}+m d^{2}, \text { where }
$$

$I_{\text {new }}=$ the mass moment of inertia about any specified axis
$I_{c}=$ the mass moment of inertia about an axis that is parallel to the above specified axis but passes through the body's mass center
$m=$ the mass of the body
$d=$ the normal distance from the body's mass center to the above-specified axis

## Radius of Gyration

The radius of gyration is defined as

$$
r=\sqrt{I / m}
$$

## PLANE MOTION OF A RIGID BODY

## Kinematics

## Instantaneous Center of Rotation (Instant Centers)

An instantaneous center of rotation (instant center) is a point, common to two bodies, at which each has the same velocity (magnitude and direction) at a given instant.

It is also a point on one body about which another body rotates, instantaneously.


The figure shows a fourbar slider-crank. Link 2 (the crank) rotates about the fixed center, $\mathrm{O}_{2}$. Link 3 couples the crank to the slider (link 4), which slides against ground (link 1). Using the definition of an instant center (IC), we see that the pins at $\mathrm{O}_{2}, \mathrm{~A}$, and B are ICs that are designated $\mathrm{I}_{12}, \mathrm{I}_{23}$, and $\mathrm{I}_{34}$. The easily observable IC is $\mathrm{I}_{14}$, which is located at infinity with its direction perpendicular to the interface between links 1 and 4 (the direction of sliding). To locate the remaining two ICs (for a fourbar) we must make use of Kennedy's rule.
Kennedy's Rule: When three bodies move relative to one another they have three instantaneous centers, all of which lie on the same straight line.
To apply this rule to the slider-crank mechanism, consider links 1,2 , and 3 whose ICs are $\mathrm{I}_{12}, \mathrm{I}_{23}$, and $\mathrm{I}_{13}$, all of which lie on a straight line. Consider also links 1,3 , and 4 whose ICs are $\mathrm{I}_{13}, \mathrm{I}_{34}$, and $\mathrm{I}_{14}$, all of which lie on a straight line. Extending the line through $\mathrm{I}_{12}$ and $\mathrm{I}_{23}$ and the line through $I_{34}$ and $I_{14}$ to their intersection locates $I_{13}$, which is common to the two groups of links that were considered.


Similarly, if body groups $1,2,4$ and $2,3,4$, are considered, a line drawn through known ICs $\mathrm{I}_{12}$ and $\mathrm{I}_{14}$ to the intersection of a line drawn through known ICs $\mathrm{I}_{23}$ and $\mathrm{I}_{34}$, locates $\mathrm{I}_{24}$.
The number of ICs, $c$, for a given mechanism is related to the number of links, $n$, by

$$
c=\frac{n(n-1)}{2}
$$

## Relative Motion

The equations for the relative position, velocity, and acceleration may be written as

## Translating Axis



$$
\begin{aligned}
& \boldsymbol{r}_{A}=\boldsymbol{r}_{B}+\boldsymbol{r}_{\text {rel }} \\
& \boldsymbol{v}_{A}=\boldsymbol{v}_{B}+\boldsymbol{\omega} \times \boldsymbol{r}_{\text {rel }} \\
& \boldsymbol{a}_{A}=\boldsymbol{a}_{B}+\boldsymbol{\alpha} \times \boldsymbol{r}_{\text {rel }}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\text {rel }}\right)
\end{aligned}
$$

where, $\omega$ and $\alpha$ are, respectively, the angular velocity and angular acceleration of the relative position vector $\boldsymbol{r}_{\text {rel }}$.

## Rotating Axis



$$
\begin{aligned}
& \boldsymbol{r}_{A}=\boldsymbol{r}_{B}+\boldsymbol{r}_{\text {rel }} \\
& \boldsymbol{v}_{A}=\boldsymbol{v}_{B}+\boldsymbol{\omega} \times \boldsymbol{r}_{\text {rel }}+\boldsymbol{v}_{\text {rel }} \\
& \boldsymbol{a}_{A}=\boldsymbol{a}_{B}+\boldsymbol{\alpha} \times \boldsymbol{r}_{\text {rel }}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\text {rel }}\right)+2 \boldsymbol{\omega} \times \boldsymbol{v}_{\text {rel }}+\boldsymbol{a}_{\text {rel }}
\end{aligned}
$$

where, $\omega$ and $\alpha$ are, respectively, the total angular velocity and acceleration of the relative position vector $\boldsymbol{r}_{\text {rel }}$.

## Rigid Body Rotation

For rigid body rotation $\theta$

$$
\begin{aligned}
\omega & =d \theta / d t, \\
\alpha & =d \omega / d t, \text { and } \\
\alpha d \theta & =\omega d \omega
\end{aligned}
$$

## Kinetics

In general, Newton's second laws for a rigid body, with constant mass and mass moment of inertia, in plane motion may be written in vector form as

$$
\begin{aligned}
\sum \boldsymbol{F} & =m \boldsymbol{a}_{c} \\
\sum \boldsymbol{M}_{c} & =I_{c} \boldsymbol{\alpha} \\
\sum \boldsymbol{M}_{p} & =I_{c} \boldsymbol{\alpha}+\boldsymbol{\rho}_{p c} \times m \boldsymbol{a}_{c}, \text { where }
\end{aligned}
$$

$\boldsymbol{F}$ are forces and $\boldsymbol{a}_{c}$ is the acceleration of the body's mass center both in the plane of motion, $\boldsymbol{M}_{\mathrm{c}}$ are moments and $\boldsymbol{\alpha}$ is the angular acceleration both about an axis normal to the plane of motion, $I_{c}$ is the mass moment of inertia about the normal axis through the mass center, and $\boldsymbol{\rho}_{p c}$ is a vector from point $p$ to point $c$.

Without loss of generality, the body may be assumed to be in the $x-y$ plane. The scalar equations of motion may then be written as

$$
\begin{aligned}
\sum F_{x} & =m a_{x c} \\
\sum F_{y} & =m a_{y c} \\
\sum M_{z c} & =I_{z c} \alpha, \text { where }
\end{aligned}
$$

$z c$ indicates the $z$ axis passing through the body's mass center, $a_{x c}$ and $a_{y c}$ are the acceleration of the body's mass center in the $x$ and $y$ directions, respectively, and $\alpha$ is the angular acceleration of the body about the $z$ axis.

## Rotation about an Arbitrary Fixed Axis

For rotation about some arbitrary fixed axis $q$

$$
\sum M_{q}=I_{q} \alpha
$$

If the applied moment acting about the fixed axis is constant then integrating with respect to time, from $t=0$ yields

$$
\begin{aligned}
& \alpha=M_{q} / I_{q} \\
& \omega=\omega_{0}+\alpha t \\
& \theta=\theta_{0}+\omega_{0} t+\alpha t^{2} / 2
\end{aligned}
$$

where $\omega_{0}$, and $\theta_{0}$ are the values of angular velocity and angular displacement at time $t=0$, respectively.

The change in kinetic energy is the work done in accelerating the rigid body from $\omega_{0}$ to $\omega$

$$
I_{q} \omega^{2} / 2=I_{q} \omega_{0}^{2} / 2+\int_{\theta_{0}}^{\theta} M_{q} d \theta
$$

## Kinetic Energy

In general the kinetic energy for a rigid body may be written as

$$
T=m v^{2} / 2+I_{c} \omega^{2} / 2
$$

For motion in the $x y$ plane this reduces to

$$
T=m\left(v_{c x}^{2}+v_{c y}^{2}\right) / 2+I_{c} \omega_{z}^{2} / 2
$$

For motion about an instant center,

$$
T=I_{I C} \omega^{2} / 2
$$

## Free Vibration

The figure illustrates a single degree-of-freedom system.


The equation of motion may be expressed as

$$
m \ddot{x}=m g-k\left(x+\delta_{s t}\right)
$$

where $m$ is mass of the system, $k$ is the spring constant of the system, $\delta_{s t}$ is the static deflection of the system, and $x$ is the displacement of the system from static equilibrium.

From statics it may be shown that

$$
m g=k \delta_{s t}
$$

thus the equation of motion may be written as

$$
\begin{aligned}
& m \ddot{x}+k x=0, \text { or } \\
& \ddot{x}+(k / m) x=0
\end{aligned}
$$

The solution of this differential equation is

$$
x(t)=C_{1} \cos \left(\omega_{n} t\right)+C_{2} \sin \left(\omega_{n} t\right)
$$

where $\omega_{n}=\sqrt{k / m}$ is the undamped natural circular frequency and $C_{1}$ and $C_{2}$ are constants of integration whose values are determined from the initial conditions.

If the initial conditions are denoted as $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$, then

$$
x(t)=x_{0} \cos \left(\omega_{n} t\right)+\left(v_{0} / \omega_{n}\right) \sin \left(\omega_{n} t\right)
$$

It may also be shown that the undamped natural frequency may be
expressed in terms of the static deflection of the system as

$$
\omega_{n}=\sqrt{g / \delta_{s t}}
$$

The undamped natural period of vibration may now be written as

$$
\tau_{n}=2 \pi / \omega_{n}=2 \pi \sqrt{m / k}=2 \pi \sqrt{\delta_{s t} / g}
$$

## Torsional Vibration



For torsional free vibrations it may be shown that the differential
equation of motion is

$$
\ddot{\theta}+\left(k_{t} / I\right) \theta=0, \text { where }
$$

$\theta=$ the angular displacement of the system
$k_{t}=$ the torsional stiffness of the massless rod
$I=$ the mass moment of inertia of the end mass

The solution may now be written in terms of the initial conditions
$\theta(0)=\theta_{0}$ and $\dot{\theta}(0)=\dot{\theta}_{0}$ as

$$
\theta(t)=\theta_{0} \cos \left(\omega_{n} t\right)+\left(\dot{\theta}_{0} / \omega_{n}\right) \sin \left(\omega_{n} t\right)
$$

where the undamped natural circular frequency is given by

$$
\omega_{n}=\sqrt{k_{t} / I}
$$

The torsional stiffness of a solid round rod with associated polar moment-of-inertia $J$, length $L$, and shear modulus of elasticity G is given by

$$
k_{t}=G J / L
$$

Thus the undamped circular natural frequency for a system with a solid round supporting rod may be written as

$$
\omega_{n}=\sqrt{G J / I L}
$$

Similar to the linear vibration problem, the undamped natural period may be written as

$$
\tau_{n}=2 \pi / \omega_{n}=2 \pi \sqrt{I / k_{t}}=2 \pi \sqrt{I L / G J}
$$

| Figure | Mass \& Centroid | Mass Moment of Inertia | (Radius of Gyration) ${ }^{\mathbf{2}}$ | Product of Inertia |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & M=\rho L A \\ & x_{c}=\mathrm{L} / 2 \\ & y_{c}=0 \\ & z_{c}=0 \\ & A= \\ & \quad \text { cross-sectional area of } \\ & \quad \quad \text { rod } \\ & \rho= \\ & \text { mass } / \mathrm{vol} . \end{aligned}$ | $\begin{aligned} I_{x} & =I_{x_{c}}=0 \\ I_{y_{c}} & =I_{z_{c}}=M L^{2} / 12 \\ I_{y} & =I_{z}=M L^{2} / 3 \end{aligned}$ | $\begin{aligned} & r_{x}^{2}=r_{x_{c}}^{2}=0 \\ & r_{y_{c}}^{2}=r_{z_{c}}^{2}=L^{2} / 12 \\ & r_{y}^{2}=r_{z}^{2}=L^{2} / 3 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}, \text { etc. }=0 \\ & I_{x y}, \text { etc. }=0 \end{aligned}$ |
|  | $\begin{aligned} & M=2 \pi R \rho A \\ & x_{c}= \mathrm{R}=\text { mean radius } \\ & y_{c}=\mathrm{R}=\text { mean radius } \\ & z_{c}= 0 \\ & A= \text { cross-sectional area of } \\ & \quad \text { ring } \\ & \rho= \text { mass } / \text { vol } . \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =I_{y_{c}}=M R^{2} / 2 \\ I_{z_{c}} & =M R^{2} \\ I_{x} & =I_{y}=3 M R^{2} / 2 \\ I_{z} & =3 M R^{2} \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=R^{2} / 2 \\ & r_{2 c}^{2}=R^{2} \\ & r_{x}^{2}=r_{y}^{2}=3 R^{2} / 2 \\ & r_{z}^{2}=3 R^{2} \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{c}}, \text { etc. }=0 \\ & I_{z_{c}}=M R^{2} \\ & I_{x z}=I_{y z}=0 \end{aligned}$ |
|  | $\begin{aligned} & M=\pi R^{2} \rho h \\ & x_{c}=0 \\ & y_{c}=\mathrm{h} / 2 \\ & z_{c}=0 \\ & \rho=\text { mass } / \mathrm{vol} . \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=I_{z_{c}}=M\left(3 R^{2}+h^{2}\right) / 12 \\ & I_{y_{c}}=I_{y}=M R^{2} / 2 \\ & I_{x}=I_{z}=M\left(3 R^{2}+4 h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} & r_{x_{c_{c}}^{2}}^{2}=r_{z_{c}}^{2}=\left(3 R^{2}+h^{2}\right) / 12 \\ & r_{y_{c}}^{2}=r_{y}^{2}=R^{2} / 2 \\ & r_{x}^{2}=r_{z}^{2}=\left(3 R^{2}+4 h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} & I_{x_{c} y_{y}}, \text { etc. }=0 \\ & I_{x y}, \text { etc. }=0 \end{aligned}$ |
|  | $\begin{aligned} & M=\pi\left(R_{1}^{2}-R_{2}^{2}\right) \rho h \\ & x_{c}=0 \\ & y_{c}=h / 2 \\ & z_{c}=0 \\ & \rho=\text { mass } / \mathrm{vol} . \end{aligned}$ | $\begin{aligned} I_{x_{c}} & =I_{z_{c}} \\ & =M\left(3 R_{1}^{2}+3 R_{2}^{2}+h^{2}\right) / 12 \\ I_{y_{c}} & =I_{y}=M\left(R_{1}^{2}+R_{2}^{2}\right) / 2 \\ I_{x} & =I_{z} \\ & =M\left(3 R_{1}^{2}+3 R_{2}^{2}+4 h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} r_{x_{c}}^{2} & =r_{z_{c}}^{2}=\left(3 R_{1}^{2}+3 R_{2}^{2}+h^{2}\right) / 12 \\ r_{y_{c}}^{2} & =r_{y}^{2}=\left(R_{1}^{2}+R_{2}^{2}\right) / 2 \\ r_{x}^{2} & =r_{z}^{2} \\ & =\left(3 R_{1}^{2}+3 R_{2}^{2}+4 h^{2}\right) / 12 \end{aligned}$ | $\begin{aligned} & I_{x_{x} y_{y}}, \text { etc. }=0 \\ & I_{x y} \text {,etc. }=0 \end{aligned}$ |
|  | $\begin{aligned} M & =\frac{4}{3} \pi R^{3} \rho \\ x_{c} & =0 \\ y_{c} & =0 \\ z_{c} & =0 \\ \rho & =\text { mass } / \mathrm{vol} . \end{aligned}$ | $\begin{aligned} & I_{x_{c}}=I_{x}=2 M R^{2} / 5 \\ & I_{y_{c}}=I_{y}=2 M R^{2} / 5 \\ & I_{z_{c}}=I_{z}=2 M R^{2} / 5 \end{aligned}$ | $\begin{aligned} & r_{x_{c}}^{2}=r_{x}^{2}=2 R^{2} / 5 \\ & r_{y_{c}}^{2}=r_{y}^{2}=2 R^{2} / 5 \\ & r_{z_{c}}^{2}=r_{z}^{2}=2 R^{2} / 5 \end{aligned}$ | $I_{x_{c} y_{c}}$, etc. $=0$ |

# MECHANICS OF MATERIALS 

UNIAXIAL STRESS-STRAIN
Stress-Strain Curve for Mild Steel


The slope of the linear portion of the curve equals the modulus of elasticity.

## DEFINITIONS

## Engineering Strain

$$
\varepsilon=\Delta L / L_{0}, \text { where }
$$

$\varepsilon=$ engineering strain (units per unit),
$\Delta L=$ change in length (units) of member,
$L_{0}=$ original length (units) of member.

## Percent Elongation

$$
\% \text { Elongation }=\left(\frac{\Delta L}{L_{o}}\right) \times 100
$$

## Percent Reduction in Area (RA)

The $\%$ reduction in area from initial area, $A_{i}$, to final area, $A_{f}$, is:

$$
\% \mathrm{RA} \quad=\left(\frac{A_{i}-A_{f}}{A_{i}}\right) \times 100
$$

## True Stress is load divided by actual cross-sectional area.

## Shear Stress-Strain

$\gamma=\tau / G$, where
$\gamma=$ shear strain,
$\tau=$ shear stress, and
$G=$ shear modulus (constant in linear force-deformation relationship).

$$
G=\frac{E}{2(1+v)}, \text { where }
$$

$\mathrm{E}=$ modulus of elasticity
$v=$ Poisson's ratio, and
$=-($ lateral strain $) /($ longitudinal strain $)$.

Uniaxial Loading and Deformation

$$
\sigma=P / A, \text { where }
$$

$\sigma=$ stress on the cross section,
$P=$ loading, and
$A=$ cross-sectional area.

$$
\varepsilon=\delta / L, \text { where }
$$

$\delta=$ elastic longitudinal deformation and
$L=$ length of member.

$$
\begin{aligned}
& E=\sigma / \varepsilon=\frac{P / A}{\delta / L} \\
& \delta=\frac{P L}{A E}
\end{aligned}
$$

## THERMAL DEFORMATIONS

$$
\delta_{t}=\alpha L\left(T-T_{o}\right), \text { where }
$$

$\delta_{t}=$ deformation caused by a change in temperature,
$\alpha=$ temperature coefficient of expansion,
$L=$ length of member,
$T=$ final temperature, and
$T_{o}=$ initial temperature.

## CYLINDRICAL PRESSURE VESSEL

## Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

$$
\sigma_{t}=P_{i} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \quad \text { and } \quad 0>\sigma_{r}>-P_{i}
$$

For external pressure only, the stresses at the outside wall are:

$$
\sigma_{t}=-P_{o} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \text { and } 0>\sigma_{r}>-P_{o}, \text { where }
$$

$\sigma_{t}=$ tangential (hoop) stress,
$\sigma_{r}=$ radial stress,
$P_{i}=$ internal pressure,
$P_{o}=$ external pressure,
$r_{i}=$ inside radius, and
$r_{o}=$ outside radius.
For vessels with end caps, the axial stress is:

$$
\sigma_{a}=P_{i} \frac{r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}}
$$

These are principal stresses.

- Flinn, Richard A. \& Paul K. Trojan, Engineering Materials \& Their Applications, 4th ed., Houghton Mifflin Co., 1990.

When the thickness of the cylinder wall is about one-tenth or less, of inside radius, the cylinder can be considered as thin-walled. In which case, the internal pressure is resisted by the hoop stress and the axial stress.

$$
\sigma_{t}=\frac{P_{i} r}{t} \quad \text { and } \quad \sigma_{a}=\frac{P_{i} r}{2 t}
$$

where $t=$ wall thickness.

## STRESS AND STRAIN

## Principal Stresses

For the special case of a two-dimensional stress state, the equations for principal stress reduce to

$$
\begin{aligned}
& \sigma_{a}, \sigma_{b}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \sigma_{c}=0
\end{aligned}
$$

The two nonzero values calculated from this equation are temporarily labeled $\sigma_{a}$ and $\sigma_{b}$ and the third value $\sigma_{c}$ is always zero in this case. Depending on their values, the three roots are then labeled according to the convention: algebraically largest $=\sigma_{1}$, algebraically smallest $=\sigma_{3}$, other $=\sigma_{2}$. A typical 2D stress element is shown below with all indicated components shown in their positive sense.


## Mohr's Circle - Stress, 2D

To construct a Mohr's circle, the following sign conventions are used.

1. Tensile normal stress components are plotted on the horizontal axis and are considered positive. Compressive normal stress components are negative.
2. For constructing Mohr's circle only, shearing stresses are plotted above the normal stress axis when the pair of shearing stresses, acting on opposite and parallel faces of an element, forms a clockwise couple. Shearing stresses are plotted below the normal axis when the shear stresses form a counterclockwise couple.

The circle drawn with the center on the normal stress (horizontal) axis with center, C , and radius, $R$, where

$$
C=\frac{\sigma_{x}+\sigma_{y}}{2}, \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

The two nonzero principal stresses are then:

$$
\text { - } \begin{aligned}
& \sigma_{a}=C+R \\
& \sigma_{b}=C-R
\end{aligned}
$$



The maximum inplane shear stress is $\tau_{\mathrm{in}}=R$. However, the maximum shear stress considering three dimensions is always

$$
\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2} .
$$

## Hooke's Law

Three-dimensional case:

$$
\begin{array}{ll}
\varepsilon_{x}=(1 / E)\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] & \gamma_{x y}=\tau_{x y} / G \\
\varepsilon_{y}=(1 / E)\left[\sigma_{y}-v\left(\sigma_{z}+\sigma_{x}\right)\right] & \gamma_{y z}=\tau_{y z} / G \\
\varepsilon_{z}=(1 / E)\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \gamma_{z x}=\tau_{z x} / G
\end{array}
$$

Plane stress case ( $\sigma_{z}=0$ ):
$\begin{aligned} & \varepsilon_{x}=(1 / E)\left(\sigma_{x}-v \sigma_{y}\right) \\ & \varepsilon_{y}=(1 / E)\left(\sigma_{y}-v \sigma_{x}\right) \\ & \varepsilon_{z}=-(1 / E)\left(v \sigma_{x}+v \sigma_{y}\right)\end{aligned} \quad\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2}\end{array}\right]\left\{\begin{array}{l}\varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{x y}\end{array}\right\}$
Uniaxial case $\left(\sigma_{y}=\sigma_{z}=0\right)$ : $\quad \sigma_{\mathrm{x}}=\mathrm{E} \varepsilon_{x}$ or $\sigma=\mathrm{E} \varepsilon$, where
$\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}, \varepsilon_{\mathrm{z}}=$ normal strain,
$\sigma_{x}, \sigma_{y}, \sigma_{z}=$ normal stress,
$\gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{zx}}=$ shear strain,
$\tau_{\mathrm{xy}}, \tau_{\mathrm{yz}}, \tau_{\mathrm{zx}}=$ shear stress,
$E=$ modulus of elasticity,
$G=$ shear modulus, and
$v=$ Poisson's ratio.

[^1]
## STATIC LOADING FAILURE THEORIES

## Brittle Materials

## Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs when one of the three principal stresses equals the strength of the material. If $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$, then the theory predicts that failure occurs whenever $\sigma_{1} \geq S_{u t}$ or $\sigma_{3} \leq-S_{u c}$ where $S_{u t}$ and $S_{u c}$ are the tensile and compressive strengths, respectively.

## Coulomb-Mohr Theory

The Coulomb-Mohr theory is based upon the results of tensile and compression tests. On the $\sigma, \tau$ coordinate system, one circle is plotted for $\mathrm{S}_{\mathrm{ut}}$ and one for $\mathrm{S}_{\mathrm{uc}}$. As shown in the figure, lines are then drawn tangent to these circles. The Coulomb-Mohr theory then states that fracture will occur for any stress situation that produces a circle that is either tangent to or crosses the envelope defined by the lines tangent to the $\mathrm{S}_{\mathrm{ut}}$ and $\mathrm{S}_{\mathrm{uc}}$ circles.


If $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$ and $\sigma_{3}<0$, then the theory predicts that yielding will occur whenever

$$
\frac{\sigma_{1}}{S_{u t}}-\frac{\sigma_{3}}{S_{u c}} \geq 1
$$

## Ductile Materials

## Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins when the maximum shear stress equals the maximum shear stress in a tension-test specimen of the same material when that specimen begins to yield. If $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$, then the theory predicts that yielding will occur whenever $\tau_{\max } \geq S_{y} / 2$ where $S_{y}$ is the yield strength.

## Distortion-Energy Theory

The distortion-energy theory states that yielding begins whenever the distortion energy in a unit volume equals the distortion energy in the same volume when uniaxially stressed to the yield strength. The theory predicts that yielding will occur whenever

$$
\left[\frac{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}}{2}\right]^{1 / 2} \geq S_{y}
$$

The term on the left side of the inequality is known as the effective or Von Mises stress. For a biaxial stress state the effective stress becomes

$$
\sigma^{\prime}=\left(\sigma_{A}^{2}-\sigma_{A} \sigma_{B}+\sigma_{B}^{2}\right)^{1 / 2}
$$

or

$$
\sigma^{\prime}=\left(\sigma_{x}^{2}-\sigma_{x} \sigma_{y}+\sigma_{y}^{2}+3 \tau_{x y}^{2}\right)^{1 / 2}
$$

where $\sigma_{A}$ and $\sigma_{B}$ are the two nonzero principal stresses and $\sigma_{x}, \sigma_{y}$, and $\tau_{x y}$ are the stresses in orthogonal directions.

## VARIABLE LOADING FAILURE THEORIES

Modified Goodman Theory: The modified Goodman criterion states that a fatigue failure will occur whenever

$$
\frac{\sigma_{a}}{S_{e}}+\frac{\sigma_{m}}{S_{u t}} \geq 1 \quad \text { or } \quad \frac{\sigma_{\max }}{\mathrm{S}_{\mathrm{y}}} \geq 1, \quad \sigma_{m} \geq 0,
$$

where
$S_{e}=$ fatigue strength,
$S_{u t}=$ ultimate strength,
$S_{y}=$ yield strength,
$\sigma_{a}=$ alternating stress, and
$\sigma_{m}=$ mean stress.
$\sigma_{\text {max }}=\sigma_{m}+\sigma_{a}$
Soderberg Theory: The Soderberg theory states that a fatigue failure will occur whenever

$$
\frac{\sigma_{a}}{S_{e}}+\frac{\sigma_{m}}{S_{y}} \geq 1, \quad \sigma_{m} \geq 0
$$

Endurance Limit for Steels: When test data is unavailable, the endurance limit for steels may be estimated as

$$
\mathrm{S}_{\mathrm{e}}^{\prime}=\left\{\begin{array}{c}
0.5 \mathrm{~S}_{\mathrm{ut}}, \mathrm{~S}_{\mathrm{ut}} \leq 1,400 \mathrm{MPa} \\
700 \mathrm{MPa}, \mathrm{~S}_{\mathrm{ut}}>1,400 \mathrm{MPa}
\end{array}\right\}
$$

Endurance Limit Modifying Factors: Endurance limit modifying factors are used to account for the differences between the endurance limit as determined from a rotating beam test, $S_{e}^{\prime}$, and that which would result in the real part, $S_{e}$.

$$
\mathrm{S}_{\mathrm{e}}=\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}} \mathrm{k}_{\mathrm{d}} \mathrm{k}_{\mathrm{e}} \mathrm{~S}_{\mathrm{e}}^{\prime}
$$

where
Surface Factor, $k_{a}=a S_{u t}^{b}$

| Surface <br> Finish | Factor $\boldsymbol{a}$ |  | Exponent <br> $\boldsymbol{b}$ |
| :--- | :---: | :---: | :---: |
|  | $\mathbf{k p s i}$ | $\mathbf{M P a}$ |  |
| Ground | 1.34 | 1.58 | -0.085 |
| Machined or <br> CD | 2.70 | 4.51 | -0.265 |
| Hot rolled | 14.4 | 57.7 | -0.718 |
| As forged | 39.9 | 272.0 | -0.995 |

Size Factor, $k_{b}$ :
For bending and torsion:

$$
\begin{array}{cl}
d \leq 8 \mathrm{~mm} ; & k_{b}=1 \\
8 \mathrm{~mm} \leq d \leq 250 \mathrm{~mm} ; & k_{b}=1.189 d_{e f f}^{-0.097} \\
d>250 \mathrm{~mm} ; & 0.6 \leq k_{b} \leq 0.75 \\
\text { For axial loading: } & k_{b}=1
\end{array}
$$

Load Factor, $k_{c}$ :

$$
\begin{array}{ll}
k_{c}=0.923 & \text { axial loading, } S_{u t} \leq 1,520 \mathrm{MPa} \\
k_{c}=1 & \text { axial loading, } S_{u t}>1,520 \mathrm{MPa} \\
k_{c}=1 & \text { bending }
\end{array}
$$

## Temperature Factor, $k_{d}$ :

for $\mathrm{T} \leq 450^{\circ} \mathrm{C}, k_{d}=1$
Miscellaneous Effects Factor, $k_{e}$ : Used to account for strength reduction effects such as corrosion, plating, and residual stresses. In the absence of known effects, use $k_{e}=1$.

## TORSION

Torsion stress in circular solid or thick-walled ( $\mathrm{t}>0.1 \mathrm{r}$ ) shafts:

$$
\tau=\frac{T r}{J}
$$

where $J=$ polar moment of inertia (see table at end of DYNAMICS section).

## TORSIONAL STRAIN

$$
\gamma_{\phi z}=\operatorname{limit}_{\Delta z \rightarrow 0} r(\Delta \phi / \Delta z)=r(d \phi / d z)
$$

The shear strain varies in direct proportion to the radius, from zero strain at the center to the greatest strain at the outside of the shaft. $d \phi / d z$ is the twist per unit length or the rate of twist.

$$
\begin{aligned}
\tau_{\phi z} & =G \gamma_{\phi z}=G \mathrm{r}(d \phi / d z) \\
T & =G(d \phi / d z) \int_{A} r^{2} d A=G J(d \phi / d z) \\
\phi & =\int_{o}^{L} \frac{T}{G J} d z=\frac{T L}{G J}, \text { where }
\end{aligned}
$$

$\phi=$ total angle (radians) of twist,
$T=$ torque, and
$L=$ length of shaft.
$T / \phi$ gives the twisting moment per radian of twist. This is called the torsional stiffness and is often denoted by the symbol $k$ or $c$.

## For Hollow, Thin-Walled Shafts

$$
\tau=\frac{T}{2 A_{m} t} \text {, where }
$$

$t=$ thickness of shaft wall and
$A_{m}=$ the total mean area enclosed by the shaft measured to the midpoint of the wall.

## BEAMS

## Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positive if it produces bending of the beam concave upward (compression in top fibers and tension in bottom fibers).
2. The shearing force is positive if the right portion of the beam tends to shear downward with respect to the left.

- POSItIVE BENDING


NEGATIVE BENDING


POSITIVE SHEAR

negative shear


The relationship between the load $(q)$, shear ( $V$ ), and moment ( $M$ ) equations are:

$$
\begin{aligned}
& \mathrm{q}(\mathrm{x})=-\frac{\mathrm{dV}(\mathrm{x})}{\mathrm{dx}} \\
& \mathrm{~V}=\frac{\mathrm{dM}(\mathrm{x})}{\mathrm{dx}} \\
& V_{2}-V_{1}=\int_{x_{1}}^{x_{2}}[-q(x)] d x \\
& M_{2}-M_{1}=\int_{x_{1}}^{x_{2}} V(x) d x
\end{aligned}
$$

## Stresses in Beams

$$
\varepsilon_{x}=-y / \rho, \text { where }
$$

$\rho=$ the radius of curvature of the deflected axis of the beam, and
$y=$ the distance from the neutral axis to the longitudinal fiber in question.

[^2] Co./Wadsworth Publishing Co., 1949.

Using the stress－strain relationship $\sigma=E \varepsilon$ ，
Axial Stress：$\quad \sigma_{x}=-E y / \rho$ ，where
$\sigma_{x}=$ the normal stress of the fiber located $y$－distance from the neutral axis．
$1 / \rho=M /(E I)$ ，where
$M=$ the moment at the section and
$I=$ the moment of inertia of the cross－section．
$\sigma_{x}=-M y / I$ ，where
$y=$ the distance from the neutral axis to the fiber location above or below the axis．Let $y=c$ ，where $c$ $=$ distance from the neutral axis to the outermost fiber of a symmetrical beam section．
$\sigma_{x}= \pm M c / I$

Let $S=I / c$ ：then，$\sigma_{x}= \pm M / S$ ，where
$S=$ the elastic section modulus of the beam member．
Transverse shear flow：$\quad q=V Q / I$ and
Transverse shear stress：$\tau_{x y}=V Q /(I b)$ ，where
$q=$ shear flow，
$\tau_{x y}=$ shear stress on the surface，
$V=$ shear force at the section，
$b=$ width or thickness of the cross－section，and
$Q=A^{\prime} \bar{y}^{\prime}$ ，where
$A^{\prime}=$ area above the layer（or plane）upon which the desired transverse shear stress acts and
$\bar{y}^{\prime}=$ distance from neutral axis to area centroid．

## Deflection of Beams

Using $1 / \rho=M /(E I)$ ，

$$
\begin{aligned}
& E I \frac{d^{2} y}{d x^{2}}=M, \text { differential equation of deflection curve } \\
& E I \frac{d^{3} y}{d x^{3}}=d M(x) / d x=V \\
& E I \frac{d^{4} y}{d x^{4}}=d V(x) / d x=-q
\end{aligned}
$$

Determine the deflection curve equation by double integration（apply boundary conditions applicable to the deflection and／or slope）．

$$
\begin{aligned}
& E I(d y / d x)=\int M(x) d x \\
& E I y=\int\left[\int M(x) d x\right] d x
\end{aligned}
$$

The constants of integration can be determined from the physical geometry of the beam．

## COLUMNS

For long columns with pinned ends：
Euler＇s Formula

$$
P_{c r}=\frac{\pi^{2} E I}{\ell^{2}}, \text { where }
$$

$P_{\mathrm{cr}}=$ critical axial loading，
$\ell=$ unbraced column length．
substitute $I=\mathrm{r}^{2} \mathrm{~A}$ ：

$$
\frac{P_{c r}}{A}=\frac{\pi^{2} E}{(\ell / r)^{2}}, \text { where }
$$

$\mathrm{r}=$ radius of gyration and
$\ell / r=$ slenderness ratio for the column．
For further column design theory，see the CIVIL

## ENGINEERING and MECHANICAL ENGINEERING

 sections．
## ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit，the work done during deflection（extension）of a member will be transformed into potential energy and can be recovered．
If the final load is $P$ and the corresponding elongation of a tension member is $\delta$ ，then the total energy $U$ stored is equal to the work $W$ done during loading．


The strain energy per unit volume is

$$
u=U / A L=\sigma^{2} / 2 E
$$

（for tension）
MATERIAL PROPERTIES

| Material | 気 | $\begin{aligned} & \bar{\Psi} \\ & \stackrel{\text { © }}{0} \end{aligned}$ | 昆 |  | 苞 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Modulus of Elasticity，E | Mpsi | 29.0 | 10.0 | 14.5 | 1.6 |
|  | GPa | 200.0 | 69.0 | 100.0 | 11.0 |
| Modulus of Rigidity，G | Mpsi | 11.5 | 3.8 | 6.0 | 0.6 |
|  | GPa | 80.0 | 26.0 | 41.4 | 4.1 |
| Poisson＇s Ratio，v |  | 0.30 | 0.33 | 0.21 | 0.33 |
| Coefficient of Thermal Expansion，$\alpha$ | $10^{-6} /{ }^{\circ} \mathrm{F}$ | 6.5 | 13.1 | 6.7 | 1.7 |
|  | $10^{-6} /{ }^{\circ} \mathrm{C}$ | 11.7 | 23.6 | 12.1 | 3.0 |

## Beam Deflection Formulas - Special Cases

( $\delta$ is positive downward)
$\pm$


## FLUID MECHANICS

DENSITY, SPECIFIC VOLUME, SPECIFIC
WEIGHT, AND SPECIFIC GRAVITY
The definitions of density, specific volume, specific weight, and specific gravity follow:

$$
\begin{array}{ll}
\rho=\operatorname{liminit}_{\Delta V \rightarrow 0} & \Delta m / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta W / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & g \cdot \Delta m / \Delta V=\rho g
\end{array}
$$

also $S G=\gamma / \gamma_{w}=\rho / \rho_{w}$, where
$\rho=$ density (also mass density),
$\Delta m=$ mass of infinitesimal volume,
$\Delta V=$ volume of infinitesimal object considered,
$\gamma=$ specific weight,
$\Delta W=$ weight of an infinitesimal volume,
$S G=$ specific gravity, and
$\rho_{w}=$ mass density of water at standard conditions $=1,000 \mathrm{~kg} / \mathrm{m}^{3}\left(62.43 \mathrm{lbm} / \mathrm{ft}^{3}\right)$.

## STRESS, PRESSURE, AND VISCOSITY

Stress is defined as

$$
\tau(P)=\operatorname{limit}_{\Delta A \rightarrow 0} \quad \Delta F / \Delta A, \text { where }
$$

$\tau(P)=$ surface stress vector at point $P$,
$\Delta F=$ force acting on infinitesimal area $\Delta A$, and
$\Delta A=$ infinitesimal area at point $P$.
$\tau_{n}=-p$
$\tau_{t}=\mu(d v / d y) \quad$ (one-dimensional; i.e., $y$ ), where
$\tau_{n}$ and $\tau_{t}=$ the normal and tangential stress components at point $P$,
$p=$ the pressure at point $P$,
$\mu=$ absolute dynamic viscosity of the fluid
$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}[\mathrm{lbm} /(\mathrm{ft}-\mathrm{sec})]$,
$d v=$ velocity at boundary condition, and
$d y=$ normal distance, measured from boundary.
$\nu=\mu \rho$, where
$v=$ kinematic viscosity; $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$.
For a thin Newtonian fluid film and a linear velocity profile,
$v(y)=V y / \delta ; d v / d y=V / \delta$, where
$V=$ velocity of plate on film and
$\delta=$ thickness of fluid film.
For a power law (non-Newtonian) fluid
$\tau_{t}=K(d v / d y)^{n}$, where
$K=$ consistency index, and
$n=$ power law index.

$$
\begin{aligned}
& n<1 \equiv \text { pseudo plastic } \\
& n>1 \equiv \text { dilatant }
\end{aligned}
$$

SURFACE TENSION AND CAPILLARITY
Surface tension $\sigma$ is the force per unit contact length

$$
\sigma=F / L, \text { where }
$$

$\sigma=$ surface tension, force/length,
$F=$ surface force at the interface, and
$L=$ length of interface.
The capillary rise $h$ is approximated by

$$
h=4 \sigma \cos \beta /(\gamma d) \text {, where }
$$

$h=$ the height of the liquid in the vertical tube,
$\sigma=$ the surface tension,
$\beta=$ the angle made by the liquid with the wetted tube wall,
$\gamma=$ specific weight of the liquid, and
$d=$ the diameter of the capillary tube.

## THE PRESSURE FIELD IN A STATIC LIQUID

- 



The difference in pressure between two different points is

$$
p_{2}-p_{1}=-\gamma\left(z_{2}-z_{1}\right)=-\gamma h
$$

For a simple manometer,

$$
p_{\mathrm{o}}=p_{2}+\gamma_{2} h_{2}-\gamma_{1} h_{1}
$$

Absolute pressure $=$ atmospheric pressure + gage pressure reading
Absolute pressure $=$ atmospheric pressure - vacuum gage pressure reading

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, John Wiley \& Sons, Inc., 1980. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.


## FORCES ON SUBMERGED SURFACES AND THE CENTER OF PRESSURE



Forces on ā submerged plane wàll. (a) Submérged plane sürface. (b) Pressure distribution.
The pressure on a point at a distance $Z^{\prime}$ below the surface is

$$
p=p_{\mathrm{o}}+\gamma Z^{\prime}, \text { for } Z^{\prime} \geq 0
$$

If the tank were open to the atmosphere, the effects of $p_{\mathrm{o}}$ could be ignored.
The coordinates of the center of pressure $C P$ are

$$
\begin{aligned}
& y^{*}=\left(\gamma I_{y_{c} z_{c}} \sin \alpha\right) /\left(p_{c} A\right) \text { and } \\
& z^{*}=\left(\gamma I_{y_{c}} \sin \alpha\right) /\left(p_{c} A\right), \text { where }
\end{aligned}
$$

$y^{*}=$ the $y$-distance from the centroid $(C)$ of area $(A)$ to the center of pressure,
$z^{*}=$ the $z$-distance from the centroid $(C)$ of area $(A)$ to the center of pressure,
$I_{y_{c}}$ and $I_{y_{c} z_{c}}=$ the moment and product of inertia of the area,
$p_{c}=$ the pressure at the centroid of area $(A)$, and
$Z_{c}=$ the slant distance from the water surface to the centroid $(C)$ of area $(A)$.


If the free surface is open to the atmosphere, then
$p_{o}=0$ and $p_{c}=\gamma Z_{c} \sin \alpha$.

$$
y^{*}=I_{y_{c} z_{c}} /\left(A Z_{c}\right) \quad \text { and } \quad z^{*}=I_{y_{c}} /\left(A Z_{c}\right)
$$

The force on a rectangular plate can be computed as

$$
\boldsymbol{F}=\left[p_{1} A_{v}+\left(p_{2}-p_{1}\right) A_{v} / 2\right] \mathbf{i}+V_{f} \gamma_{f} \mathbf{j}, \text { where }
$$

$\boldsymbol{F}=$ force on the plate,
$p_{1}=$ pressure at the top edge of the plate area,
$p_{2}=$ pressure at the bottom edge of the plate area,
$A_{v}=$ vertical projection of the plate area,
$V_{f}=$ volume of column of fluid above plate, and
$\gamma_{f}=$ specific weight of the fluid.

## ARCHIMEDES PRINCIPLE AND BUOYANCY

1. The buoyant force exerted on a submerged or floating body is equal to the weight of the fluid displaced by the body.
2. A floating body displaces a weight of fluid equal to its own weight; i.e., a floating body is in equilibrium.
The center of buoyancy is located at the centroid of the displaced fluid volume.
In the case of a body lying at the interface of two immiscible fluids, the buoyant force equals the sum of the weights of the fluids displaced by the body.

## ONE-DIMENSIONAL FLOWS

The Continuity Equation So long as the flow $Q$ is continuous, the continuity equation, as applied to onedimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point, $A_{1} V_{1}=A_{2} V_{2}$.

$$
\begin{aligned}
& Q=A V \\
& \dot{m}=\rho Q=\rho A V, \text { where }
\end{aligned}
$$

$Q=$ volumetric flow rate,
$\dot{m}=$ mass flow rate,
$A=$ cross section of area of flow,
$V=$ average flow velocity, and
$\rho=$ the fluid density.
For steady, one-dimensional flow, $\dot{m}$ is a constant. If, in addition, the density is constant, then $Q$ is constant.

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, John Wiley \& Sons, Inc., 1980. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.

The Field Equation is derived when the energy equation is applied to one-dimensional flows.
Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system,

$$
\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}=\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}, \text { where }
$$

$p_{1}, p_{2}=$ pressure at sections 1 and 2 ,
$V_{1}, V_{2}=$ average velocity of the fluid at the sections,
$z_{1}, z_{2}=$ the vertical distance from a datum to the sections (the potential energy),
$\gamma \quad=$ the specific weight of the fluid $(\rho g)$, and
$g \quad=$ the acceleration of gravity.

## FLUID FLOW

The velocity distribution for laminar flow in circular tubes or between planes is
$v=v_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]$, where
$r=$ the distance ( m ) from the centerline,
$R=$ the radius (m) of the tube or half the distance between the parallel planes,
$v=$ the local velocity $(\mathrm{m} / \mathrm{s})$ at $r$, and
$v_{\text {max }}=$ the velocity $(\mathrm{m} / \mathrm{s})$ at the centerline of the duct.
$v_{\max }=1.18 \mathrm{~V}$, for fully turbulent flow
( $\mathrm{Re}>10,000$ )
$v_{\max }=2 \mathrm{~V}$, for circular tubes in laminar flow and
$v_{\max }=1.5 \mathrm{~V}$, for parallel planes in laminar flow, where
$V=$ the average velocity $(\mathrm{m} / \mathrm{s})$ in the duct.
The shear stress distribution is

$$
\frac{\tau}{\tau_{w}}=\frac{r}{R}, \text { where }
$$

$\tau$ and $\tau_{w}$ are the shear stresses at radii $r$ and $R$ respectively.

The drag force $F_{D}$ on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is
$F_{D}=\frac{C_{D} \rho V^{2} A}{2}$, where
$C_{D}=$ the drag coefficient (see page 55),
$V=$ the velocity $(\mathrm{m} / \mathrm{s})$ of the undisturbed fluid, and
$A=$ the projected area $\left(\mathrm{m}^{2}\right)$ of blunt objects such as spheres, ellipsoids, disks, and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow.

## For flat plates placed parallel with the flow

$$
\begin{aligned}
& C_{D}=1.33 / \operatorname{Re}^{0.5}\left(10^{4}<\operatorname{Re}<5 \times 10^{5}\right) \\
& C_{D}=0.031 / \operatorname{Re}^{1 / 7}\left(10^{6}<\operatorname{Re}<10^{9}\right)
\end{aligned}
$$

The characteristic length in the Reynolds Number ( Re ) is the length of the plate parallel with the flow. For blunt objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) which is perpendicular to the flow.

## AERODYNAMICS

## Airfoil Theory

The lift force on an airfoil is given by
$F_{L}=\frac{C_{L} \rho V^{2} A_{P}}{2}$
$C_{L}=$ the lift coefficient
$V=$ velocity $(\mathrm{m} / \mathrm{s})$ of the undisturbed fluid and
$A_{P}=$ the projected area of the airfoil as seen from above (plan area). This same area is used in defining the drag coefficient for an airfoil.
The lift coefficient can be approximated by the equation
$C_{L}=2 \pi k_{1} \sin (\alpha+\beta)$ which is valid for small values of $\alpha$ and $\beta$.
$k_{1}=\mathrm{a}$ constant of proportionality
$\alpha=$ angle of attack (angle between chord of airfoil and direction of flow)
$\beta=$ negative of angle of attack for zero lift.
The drag coefficient may be approximated by
$C_{D}=C_{D \infty}+\frac{C_{L}^{2}}{\pi A R}$
$C_{D \infty}=$ infinite span drag coefficient

$$
A R=\frac{b^{2}}{A_{p}}=\frac{A_{p}}{c^{2}}
$$

The aerodynamic moment is given by
$\mathrm{M}=\frac{\mathrm{C}_{\mathrm{M}} \rho \mathrm{V}^{2} \mathrm{~A}_{\mathrm{p}} \mathrm{c}}{2}$
where the moment is taken about the front quarter point of the airfoil.
$\mathrm{C}_{\mathrm{M}}=$ moment coefficient
$\mathrm{A}_{\mathrm{p}}=$ plan area
$\mathrm{c}=$ chord length


## Reynolds Number

$$
\begin{aligned}
& \mathrm{Re}=V D \rho / \mu=V D / v \\
& \operatorname{Re}^{\prime}=\frac{V^{(2-n)} D^{n} \rho}{K\left(\frac{3 n+1}{4 n}\right)^{n} 8^{(n-1)}}, \text { where }
\end{aligned}
$$

$\rho=$ the mass density,
$D=$ the diameter of the pipe or dimension of the fluid streamline,
$\mu=$ the dynamic viscosity,
$v=$ the kinematic viscosity,
$\operatorname{Re}=$ the Reynolds number (Newtonian fluid),
$\mathrm{Re}^{\prime}=$ the Reynolds number (Power law fluid), and
$K$ and $n$ are defined on page 44 .
The critical Reynolds number $(\mathrm{Re})_{c}$ is defined to be the minimum Reynolds number at which a flow will turn turbulent.

## Hydraulic Gradient (Grade Line)

The hydraulic gradient (grade line) is defined as an imaginary line above a pipe so that the vertical distance from the pipe axis to the line represents the pressure head at that point. If a row of piezometers were placed at intervals along the pipe, the grade line would join the water levels in the piezometer water columns.

## Energy Line (Bernoulli Equation)

The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant. The energy line is this sum or the "total head line" above a horizontal datum.
The difference between the hydraulic grade line and the energy line is the $V^{2} / 2 g$ term.

## STEADY, INCOMPRESSIBLE FLOW IN CONDUITS AND PIPES

The energy equation for incompressible flow is

$$
\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{f}
$$

$h_{f}=$ the head loss, considered a friction effect, and all remaining terms are defined above.
If the cross-sectional area and the elevation of the pipe are the same at both sections ( 1 and 2 ), then $z_{1}=z_{2}$ and $V_{1}=V_{2}$. The pressure drop $p_{1}-p_{2}$ is given by the following:

$$
p_{1}-p_{2}=\gamma h_{f}
$$

The Darcy-Weisbach equation is
$h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}$, where
$f=\mathrm{f}(\operatorname{Re}, e / D)$, the Moody or Darcy friction factor,
$D=$ diameter of the pipe,
$L=$ length over which the pressure drop occurs,
$e=$ roughness factor for the pipe, and all other symbols are defined as before.
A chart that gives $f$ versus Re for various values of $e / \mathrm{D}$, known as a Moody or Stanton diagram, is available at the end of this section.

## Friction Factor for Laminar Flow

The equation for $Q$ in terms of the pressure drop $\Delta p_{f}$ is the Hagen-Poiseuille equation. This relation is valid only for flow in the laminar region.

$$
Q=\frac{\pi R^{4} \Delta p_{f}}{8 \mu L}=\frac{\pi D^{4} \Delta p_{f}}{128 \mu L}
$$

## Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section uses the hydraulic diameter $D_{\mathrm{H}}$, or the hydraulic radius $R_{H}$, as follows

$$
R_{H}=\frac{\text { cross }- \text { sectional area }}{\text { wetted perimeter }}=\frac{D_{H}}{4}
$$

## Minor Losses in Pipe Fittings, Contractions, and Expansions

Head losses also occur as the fluid flows through pipe fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe contractions and expansions.

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fitting }}, \text { where } \\
& h_{f, \text { fitting }}=C \frac{V^{2}}{2 g}
\end{aligned}
$$

Specific fittings have characteristic values of $C$, which will be provided in the problem statement. A generally accepted nominal value for head loss in well-streamlined gradual contractions is

$$
h_{f, \text { fitting }}=0.04 V^{2} / 2 g
$$

The head loss at either an entrance or exit of a pipe from or to a reservoir is also given by the $h_{f \text {, fitting }}$ equation. Values for $C$ for various cases are shown as follows.


## PUMP POWER EQUATION

$$
\dot{W}=Q \gamma h / \eta, \text { where }
$$

$Q=$ quantity of flow ( $\mathrm{m}^{3} / \mathrm{s}$ or cfs ),
$h=$ head ( m or ft) the fluid has to be lifted,
$\eta=$ efficiency, and
$\dot{W}=$ power (watts or $\mathrm{ft}-\mathrm{lbf} / \mathrm{sec}$ ).
Additonal information on fans, pumps, and compressors is included in the MECHANICAL ENGINEERING section of this handbook.

## THE IMPULSE-MOMENTUM PRINCIPLE

The resultant force in a given direction acting on the fluid equals the rate of change of momentum of the fluid.

$$
\Sigma \boldsymbol{F}=Q_{2} \rho_{2} \boldsymbol{V}_{2}-Q_{1} \rho_{1} \boldsymbol{V}_{1}, \text { where }
$$

$\Sigma \boldsymbol{F}=$ the resultant of all external forces acting on the control volume,
$Q_{1} \rho_{1} V_{1}=$ the rate of momentum of the fluid flow entering the control volume in the same direction of the force, and
$Q_{2} \rho_{2} \boldsymbol{V}_{2}=$ the rate of momentum of the fluid flow leaving the control volume in the same direction of the force.

## Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement, or contraction in a pipe line may be computed using the impulse-momentum principle.

$p_{1} A_{1}-p_{2} A_{2} \cos \alpha-F_{x}=Q \rho\left(V_{2} \cos \alpha-V_{1}\right)$

$$
F_{y}-W-p_{2} A_{2} \sin \alpha=Q \rho\left(V_{2} \sin \alpha-0\right) \text {, where }
$$

$\boldsymbol{F}=$ the force exerted by the bend on the fluid (the force exerted by the fluid on the bend is equal in magnitude and opposite in sign), $F_{x}$ and $F_{y}$ are the $x$-component and $y$-component of the force,
$p=$ the internal pressure in the pipe line,
$A=$ the cross-sectional area of the pipe line,
$W=$ the weight of the fluid,
$V=$ the velocity of the fluid flow,
$\alpha=$ the angle the pipe bend makes with the horizontal,
$\rho=$ the density of the fluid, and
$Q=$ the quantity of fluid flow.

## Jet Propulsion



$$
\begin{aligned}
& F=Q \rho\left(V_{2}-0\right) \\
& F=2 \gamma h A_{2}, \text { where }
\end{aligned}
$$

$F=$ the propulsive force,
$\gamma=$ the specific weight of the fluid,
$h=$ the height of the fluid above the outlet,
$A_{2}=$ the area of the nozzle tip,
$Q=A_{2} \sqrt{2 g h}$, and
$V_{2}=\sqrt{2 g h}$.

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, John Wiley \& sons, Inc., 1980. Diagram reprinted by permission of William Bober \& Richard A. Kenyon.
- Vennard, J.K., Elementary Fluid Mechanics, J.K. Vennard, 1954. Diagrams reprinted by permission of John Wiley \& Sons, Inc.


## Deflectors and Blades

Fixed Blade


Moving Blade
-


$$
\begin{aligned}
-F_{x}= & Q \rho\left(V_{2 x}-V_{1 x}\right) \\
& =-Q \rho\left(V_{1}-v\right)(1-\cos \alpha) \\
F_{y}= & Q \rho\left(V_{2 y}-V_{1 y}\right) \\
& =+Q \rho\left(V_{1}-v\right) \sin \alpha, \text { where }
\end{aligned}
$$

$v=$ the velocity of the blade.
Impulse Turbine


$$
\dot{W}=Q \rho\left(V_{1}-v\right)(1-\cos \alpha) v, \text { where }
$$

$\dot{W}=$ power of the turbine.

$$
\dot{W}_{\max }=Q \rho\left(V_{1}^{2} / 4\right)(1-\cos \alpha)
$$

When $\alpha=180^{\circ}$,

$$
\dot{W}_{\max }=\left(Q \rho V_{1}^{2}\right) / 2=\left(Q \gamma V_{1}^{2}\right) / 2 g
$$

## MULTIPATH PIPELINE PROBLEMS



The same head loss occurs in each branch as in the combination of the two. The following equations may be solved simultaneously for $V_{A}$ and $V_{B}$ :

$$
\begin{aligned}
& h_{L}=f_{A} \frac{l_{A}}{D_{A}} \frac{V_{A}^{2}}{2 g}=f_{B} \frac{l_{B}}{D_{B}} \frac{V_{B}^{2}}{2 g} \\
& \left(\pi D^{2} / 4\right) V=\left(\pi D_{A}^{2} / 4\right) V_{A}+\left(\pi D_{B}^{2} / 4\right) V_{B}
\end{aligned}
$$

The flow $Q$ can be divided into $Q_{A}$ and $Q_{B}$ when the pipe characteristics are known.

## OPEN-CHANNEL FLOW AND/OR PIPE FLOW

## Manning's Equation

$V=(\mathrm{k} / n) R^{2 / 3} S^{1 / 2}$, where
$\mathrm{k}=1$ for SI units,
$\mathrm{k}=1.486$ for USCS units,
$V=$ velocity ( $\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{sec}$ ),
$n=$ roughness coefficient,
$R=$ hydraulic radius ( $\mathrm{m}, \mathrm{ft}$ ), and
$S=$ slope of energy grade line $(\mathrm{m} / \mathrm{m}, \mathrm{ft} / \mathrm{ft})$.

## Hazen-Williams Equation

$$
V=\mathrm{k}_{1} C R^{0.63} S^{0.54}, \text { where }
$$

$C=$ roughness coefficient,
$\mathrm{k}_{1}=0.849$ for SI units, and
$\mathrm{k}_{1}=1.318$ for USCS units.
Other terms defined as above.

- Vennard, J.K., Elementary Fluid Mechanics, J.K. Vennard, 1954. Diagrams reprinted by permission of John Wiley \& Sons, Inc.


## FLUID MEASUREMENTS

The Pitot Tube - From the stagnation pressure equation for an incompressible fluid,

$$
V=\sqrt{(2 / \rho)\left(p_{o}-p_{s}\right)}=\sqrt{2 g\left(p_{o}-p_{s}\right) / \gamma}, \text { where }
$$

$V=$ the velocity of the fluid,
$p_{o}=$ the stagnation pressure, and
$p_{s}=$ the static pressure of the fluid at the elevation where the measurement is taken.


For a compressible fluid, use the above incompressible fluid equation if the mach number $\leq 0.3$.

## MANOMETERS



For a simple manometer,

$$
\begin{aligned}
& p_{\mathrm{o}}=p_{2}+\gamma_{2} h_{2}-\gamma_{1} h_{1} \\
& \text { If } h_{1}=h_{2}=h \\
& \quad p_{\mathrm{o}}=p_{2}+\left(\gamma_{2}-\gamma_{1}\right) h=p_{2}+\left(\rho_{2}-\rho_{1}\right) g h
\end{aligned}
$$

Note that the difference between the two densities is used.

[^3]Another device that works on the same principle as the manometer is the simple barometer.

$$
p_{\mathrm{atm}}=p_{A}=p_{v}+\gamma h=p_{B}+\gamma h
$$

- $\quad \mathrm{P}$

$p_{v}=$ vapor pressure of the barometer fluid


## Venturi Meters

$Q=\frac{C_{v} A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}$, where
$C_{v}=$ the coefficient of velocity.
The above equation is for incompressible fluids.


Orifices The cross-sectional area at the vena contracta $A_{2}$ is characterized by a coefficient of contraction $C_{c}$ and given by $C_{c} A$.


$$
Q=C A \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}
$$

where $C$, the coefficient of the meter, is given by

$$
C=\frac{C_{v} C_{c}}{\sqrt{1-C_{c}^{2}\left(A / A_{1}\right)^{2}}}
$$

| ORIFICES AND THEIR NOMINAL COEFFICIENTS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | SHARP <br> EDGED | ROUNDED | SHORT TUBE | BORDA |
|  |  |  |  |  |

Submerged Orifice operating under steady-flow conditions:
-

in which the product of $C_{c}$ and $C_{v}$ is defined as the coefficient of discharge of the orifice.

## Orifice Discharging Freely into Atmosphere

- 



$$
Q=C A \sqrt{2 g h}
$$

in which $h$ is measured from the liquid surface to the centroid of the orifice opening.

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, John Wiley \& Sons, Inc., 1980. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.
- Vennard, J.K., Elementary Fluid Mechanics, J.K. Vennard, 1954. Diagrams reprinted by permission of John Wiley \& Sons, Inc.


## DIMENSIONAL HOMOGENEITY AND DIMENSIONAL ANALYSIS

Equations that are in a form that do not depend on the fundamental units of measurement are called dimensionally homogeneous equations. A special form of the dimensionally homogeneous equation is one that involves only dimensionless groups of terms.
Buckingham's Theorem: The number of independent dimensionless groups that may be employed to describe a phenomenon known to involve $n$ variables is equal to the number ( $n-\bar{r}$ ), where $\bar{r}$ is the number of basic dimensions (i.e., M, L, T) needed to express the variables dimensionally.

## SIMILITUDE

In order to use a model to simulate the conditions of the prototype, the model must be geometrically, kinematically, and dynamically similar to the prototype system.
To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written must be the same in both the model and the prototype. Thus, dynamic similarity between two flow pictures (when all possible forces are acting) is expressed in the five simultaneous equations below.

$$
\left[\frac{F_{I}}{F_{p}}\right]_{p}=\left[\frac{F_{I}}{F_{p}}\right]_{m}=\left[\frac{\rho V^{2}}{p}\right]_{p}=\left[\frac{\rho V^{2}}{p}\right]_{m}
$$

$$
\left[\frac{F_{I}}{F_{V}}\right]_{p}=\left[\frac{F_{I}}{F_{V}}\right]_{m}=\left[\frac{V l \rho}{\mu}\right]_{p}=\left[\frac{V l \rho}{\mu}\right]_{m}=[\mathrm{Re}]_{p}=[\mathrm{Re}]_{n}
$$

$$
\left[\frac{F_{I}}{F_{G}}\right]_{p}=\left[\frac{F_{I}}{F_{G}}\right]_{m}=\left[\frac{V^{2}}{l g}\right]_{p}=\left[\frac{V^{2}}{l g}\right]_{m}=[\mathrm{Fr}]_{p}=[\mathrm{Fr}]_{m}
$$

$$
\left[\frac{F_{I}}{F_{E}}\right]_{p}=\left[\frac{F_{I}}{F_{E}}\right]_{m}=\left[\frac{\rho V^{2}}{E_{v}}\right]_{p}=\left[\frac{\rho V^{2}}{E_{v}}\right]_{m}=[\mathrm{Ca}]_{p}=[\mathrm{Ca}]_{m}
$$

$$
\left[\frac{F_{I}}{F_{T}}\right]_{p}=\left[\frac{F_{I}}{F_{T}}\right]_{m}=\left[\frac{\mathrm{\rho} l V^{2}}{\sigma}\right]_{p}=\left[\frac{\rho l V^{2}}{\sigma}\right]_{m}=[\mathrm{We}]_{p}=[\mathrm{We}]_{m}
$$

where
the subscripts $p$ and $m$ stand for prototype and model respectively, and
$F_{I}=$ inertia force,
$F_{P}=$ pressure force,
$F_{V}=$ viscous force,
$F_{G}=$ gravity force,
$F_{E}=$ elastic force,
$F_{T}=$ surface tension force,
Re $=$ Reynolds number,
$\mathrm{We}=$ Weber number,
$\mathrm{Ca}=$ Cauchy number,
$\mathrm{Fr}=$ Froude number,
$l=$ characteristic length,
$V=$ velocity,
$\rho=$ density,
$\sigma=$ surface tension,
$E_{v}=$ bulk modulus,
$\mu=$ dynamic viscosity,
$v=$ kinematic viscosity,
$p=$ pressure, and
$g=$ acceleration of gravity.

$$
\operatorname{Re}=\frac{V D \rho}{\mu}=\frac{V D}{v}
$$

PROPERTIES OF WATER ${ }^{\dagger}$ SI METRIC UNITS

| 0 <br> 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.805 | 999.8 | 0.001781 | 0.000001785 | 0.61 |
| 5 | 9.807 | 1000.0 | 0.001518 | 0.000001518 | 0.87 |
| 10 | 9.804 | 999.7 | 0.001307 | 0.000001306 | 1.23 |
| 15 | 9.798 | 999.1 | 0.001139 | 0.000001139 | 1.70 |
| 20 | 9.789 | 998.2 | 0.001002 | 0.000001003 | 2.34 |
| 25 | 9.777 | 997.0 | 0.000890 | 0.000000893 | 3.17 |
| 30 | 9.764 | 995.7 | 0.000798 | 0.000000800 | 4.24 |
| 40 | 9.730 | 992.2 | 0.000653 | 0.000000658 | 7.38 |
| 50 | 9.689 | 988.0 | 0.000547 | 0.000000553 | 12.33 |
| 60 | 9.642 | 983.2 | 0.000466 | 0.000000474 | 19.92 |
| 70 | 9.589 | 977.8 | 0.000404 | 0.000000413 | 31.16 |
| 80 | 9.530 | 971.8 | 0.000354 | 0.000000364 | 47.34 |
| 90 | 9.466 | 965.3 | 0.000315 | 0.000000326 | 70.10 |
| 100 | 9.399 | 958.4 | 0.000282 | 0.000000294 | 101.33 |

${ }^{a}$ From "Hydraulic Models," A.S.C.E. Manual of Engineering Practice, No. 25, A.S.C.E., 1942.
${ }^{\mathrm{e}}$ From J.H. Keenan and F.G. Keyes, Thermodynamic Properties of Steam, John Wiley \& Sons, 1936.
${ }^{\mathrm{f}}$ Compiled from many sources including those indicated: Handbook of Chemistry and Physics, 54th ed., The CRC Press, 1973, and Handbook of Tables for Applied Engineering Science, The Chemical Rubber Co., 1970.
Vennard, J.K. and Robert L. Street, Elementary Fluid Mechanics, John Wiley \& Sons, Inc., 1954.

| PROPERTIES OF WATER ENGLISH UNITS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature ( ${ }^{\circ}$ ) | Specific Weight $\underset{\left(\mathrm{lb} / \mathrm{ft}^{3}\right)}{\gamma}$ | Mass Density $\stackrel{\rho}{\left(\mathrm{lb} \cdot \sec ^{2} / \mathrm{ft}^{4}\right)}$ | Absolute Viscosity $\left(\times 10^{-5} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^{2}\right)$ | Kinematic Viscosity $\left(\times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec}\right)$ | Vapor Pressure <br> $p_{v}$ <br> (psi) |
| 32 | 62.42 | 1.940 | 3.746 | 1.931 | 0.09 |
| 40 | 62.43 | 1.940 | 3.229 | 1.664 | 0.12 |
| 50 | 62.41 | 1.940 | 2.735 | 1.410 | 0.18 |
| 60 | 62.37 | 1.938 | 2.359 | 1.217 | 0.26 |
| 70 | 62.30 | 1.936 | 2.050 | 1.059 | 0.36 |
| 80 | 62.22 | 1.934 | 1.799 | 0.930 | 0.51 |
| 90 | 62.11 | 1.931 | 1.595 | 0.826 | 0.70 |
| 100 | 62.00 | 1.927 | 1.424 | 0.739 | 0.95 |
| 110 | 61.86 | 1.923 | 1.284 | 0.667 | 1.24 |
| 120 | 61.71 | 1.918 | 1.168 | 0.609 | 1.69 |
| 130 | 61.55 | 1.913 | 1.069 | 0.558 | 2.22 |
| 140 | 61.38 | 1.908 | 0.981 | 0.514 | 2.89 |
| 150 | 61.20 | 1.902 | 0.905 | 0.476 | 3.72 |
| 160 | 61.00 | 1.896 | 0.838 | 0.442 | 4.74 |
| 170 | 60.80 | 1.890 | 0.780 | 0.413 | 5.99 |
| 180 | 60.58 | 1.883 | 0.726 | 0.385 | 7.51 |
| 190 | 60.36 | 1.876 | 0.678 | 0.362 | 9.34 |
| 200 | 60.12 | 1.868 | 0.637 | 0.341 | 11.52 |
| 212 | 59.83 | 1.860 | 0.593 | 0.319 | 14.7 |

## MOODY (STANTON) DIAGRAM

|  | $e,(f t)$ | $e,(m m)$ |
| :--- | :--- | :--- |
| Riveted steel | $10.003-0.03$ | $0.9-9.0$ |
| Concrete | $0.001-0.01$ | $0.3-3.0$ |
| Cast iron | 0.00085 | 0.25 |
| Galvanized iron | 0.0005 | 0.15 |
| Commercial steel or wrought iron | 0.00015 | 0.046 |
| Drawn tubing | 0.000005 | 0.0015 |



From ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

DRAG COEFFICIENTS FOR SPHERES, DISKS, AND CYLINDERS


## THERMODYNAMICS

## PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature

1. Intensive properties are independent of mass.
2. Extensive properties are proportional to mass.
3. Specific properties are lower case (extensive/mass).

## State Functions (properties)

Absolute Pressure, $p$

$$
\left(\mathrm{lbf} / \mathrm{in}^{2} \text { or } \mathrm{Pa}\right)
$$

Absolute Temperature, $T$
Specific Volume, v
Internal Energy, $u$
Enthalpy, $h=u+P v$
Entropy, $s$
[Btu/(lbm-유) or kJ/(kg.K)]
Gibbs Free Energy, $g=h-T s$ (same units as $u$ )
Helmholz Free Energy, $a=u-T s$ (same units as $u$ )
Heat Capacity at Constant Pressure, $c_{p}=\left(\frac{\partial h}{\partial T}\right)_{P}$
Heat Capacity at Constant Volume, $c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}$
Quality $x$ (applies to liquid-vapor systems at saturation) is defined as the mass fraction of the vapor phase:

$$
x=m_{g} /\left(m_{g}+m_{f}\right), \text { where }
$$

$m_{g}=$ mass of vapor, and
$m_{f}=$ mass of liquid.
Specific volume of a two-phase system can be written:
$v=x v_{g}+(1-x) v_{f} \quad$ or $\quad v=x v_{f g}+v_{f}$, where
$v_{f}=$ specific volume of saturated liquid,
$v_{g}=$ specific volume of saturated vapor, and
$v_{f g}=$ specific volume change upon vaporization.

$$
=v_{g}-v_{f}
$$

Similar expressions exist for $u, h$, and $s$ :

$$
\begin{aligned}
u & =x u_{g}+(1-x) u_{f} \\
h & =x h_{g}+(1-x) h_{f} \\
s & =x s_{g}+(1-x) s_{f}
\end{aligned}
$$

For a simple substance, specification of any two intensive, independent properties is sufficient to fix all the rest.
For an ideal gas, $P v=R T$ or $P V=m R T$, and
$P_{1} v_{1} / T_{1}=P_{2} v_{2} / T_{2}$, where
$p=$ pressure,
$v=$ specific volume,
$m=$ mass of gas,
$R=$ gas constant, and
$T=$ absolute temperature.
$R$ is specific to each gas but can be found from

$$
R=\frac{\bar{R}}{(\text { mol. wt. })}, \text { where }
$$

$\bar{R}=$ the universal gas constant
$=1,545 \mathrm{ft}-\mathrm{lbf} /\left(\mathrm{lbmol}-{ }^{\circ} \mathrm{R}\right)=8,314 \mathrm{~J} /(\mathrm{kmol} \cdot \mathrm{K})$.
For Ideal Gases, $c_{P}-c_{v}=R$
Also, for Ideal Gases:

$$
\left(\frac{\partial h}{\partial v}\right)_{T}=0 \quad\left(\frac{\partial u}{\partial v}\right)_{T}=0
$$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$
\begin{aligned}
& \Delta u=c_{v} \Delta T ; \quad \Delta h=c_{P} \Delta T \\
& \Delta s=c_{P} \ln \left(T_{2} / T_{1}\right)-R \ln \left(P_{2} / P_{1}\right) ; \text { and } \\
& \Delta s=c_{v} \ln \left(T_{2} / T_{1}\right)+R \ln \left(v_{2} / v_{1}\right)
\end{aligned}
$$

For heat capacities that are temperature dependent, the value to be used in the above equations for $\Delta \mathrm{h}$ is known as the mean heat capacity $\left(\bar{c}_{p}\right)$ and is given by

$$
\bar{c}_{p}=\frac{\int_{T_{1}}^{T_{2}} c_{p} d T}{T_{2}-T_{1}}
$$

Also, for constant entropy processes:

$$
\begin{aligned}
& P_{1} v_{1}^{k}=P_{2} v_{2}^{k} ; \quad \quad T_{1} P_{1}^{(1-k) / k}=T_{2} P_{2}^{(1-k) / k} \\
& T_{1} v_{1}^{(k-1)}=T_{2} v_{2}^{(k-1)}, \text { where } k=c_{p} / c_{v}
\end{aligned}
$$

## FIRST LAW OF THERMODYNAMICS

The First Law of Thermodynamics is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.
Heat $Q$ is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

## Closed Thermodynamic System

No mass crosses system boundary

$$
Q-W=\Delta U+\Delta \mathrm{KE}+\Delta \mathrm{PE}
$$

where
$\triangle K E=$ change in kinetic energy, and
$\triangle P E=$ change in potential energy.
Energy can cross the boundary only in the form of heat or work. Work can be boundary work, $w_{b}$, or other work forms (electrical work, etc.)
Work $W\left(w=\frac{W}{m}\right)$ is considered positive if it is outward or work done by the system.
Reversible boundary work is given by $w_{\mathrm{b}}=\int P d v$.

## Special Cases of Closed Systems

Constant Pressure (Charles' Law):

$$
w_{b}=P \Delta v
$$

(ideal gas) $T / v=$ constant

Constant Volume:

Isentropic (ideal gas),

$$
\text { (ideal gas) } T / P=\text { constant }
$$

$$
\begin{aligned}
w= & \left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-k) \\
& =R\left(T_{2}-T_{1}\right) /(1-k)
\end{aligned}
$$

Constant Temperature (Boyle's Law):
(ideal gas) $P v=$ constant

Polytropic (ideal gas), $\quad P v^{n}=$ constant:

$$
w_{\mathrm{b}}=R T \ln \left(v_{2} / v_{1}\right)=R T \ln \left(P_{1} / P_{2}\right)
$$

$$
w=\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-n)
$$

## Open Thermodynamic System

Mass to cross the system boundary
There is flow work (PV) done by mass entering the system. The reversible flow work is given by:

$$
w_{\mathrm{rev}}=-\int v d P+\Delta K E+\Delta P E
$$

First Law applies whether or not processes are reversible.
FIRST LAW (energy balance)

$$
\begin{gathered}
\Sigma \dot{m}\left[h_{i}+V_{i}^{2} / 2+g Z_{i}\right]-\Sigma \dot{m}\left[h_{e}+V_{e}^{2} / 2+g Z_{e}\right] \\
\\
+\dot{Q}_{i n}-\dot{W}_{\text {net }}=d\left(m_{s} u_{s}\right) / d t, \text { where }
\end{gathered}
$$

$\dot{W}_{\text {net }}=$ rate of net or shaft work transfer,
$m_{s}=$ mass of fluid within the system,
$u_{s}=$ specific internal energy of system, and
$\dot{Q}=$ rate of heat transfer (neglecting kinetic and potential energy).

## Special Cases of Open Systems

Constant Volume:

$$
w_{\text {rev }}=-v\left(P_{2}-P_{1}\right)
$$

Constant Pressure:
Constant Temperature:
(ideal gas) $P v=$ constant:

$$
w_{\text {rev }}=R T \ln \left(v_{2} / v_{1}\right)=R T \ln \left(P_{1} / P_{2}\right)
$$

Isentropic (ideal gas):

$$
P v^{k}=\text { constant: }
$$

$$
\begin{array}{r}
w_{\text {rev }}=k\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-k) \\
=k R\left(T_{2}-T_{1}\right) /(1-k) \\
w_{\text {rev }}=\frac{k}{k-1} R T_{1}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}\right]
\end{array}
$$

Polytropic:

$$
P v^{n}=\text { constant }
$$

$$
w_{\text {rev }}=n\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-n)
$$

## Steady-State Systems

The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers.

$$
\begin{array}{r}
\sum \dot{m}_{i}\left(h_{i}+V_{i}^{2} / 2+g Z_{i}\right)-\sum \dot{m}_{e}\left(h_{e}+V_{e}^{2} / 2+g Z_{e}\right) \\
\\
+\dot{Q}_{\text {in }}-\dot{W}_{\text {out }}=0 \text { and } \\
\sum \dot{m}_{i}=\sum \dot{m}_{e}
\end{array}
$$

where
$\dot{m}=$ mass flow rate (subscripts $i$ and $e$ refer to inlet and exit states of system),
$g=$ acceleration of gravity,
$Z=$ elevation,
$V=$ velocity, and
$\dot{W}=$ rate of work.

## Special Cases of Steady-Flow Energy Equation

Nozzles, Diffusers: Velocity terms are significant. No elevation change, no heat transfer, and no work. Single mass stream.

$$
h_{i}+V_{i}^{2} / 2=h_{e}+V_{e}^{2} / 2
$$

Efficiency (nozzle) $=\frac{V_{e}^{2}-V_{i}^{2}}{2\left(h_{i}-h_{e s}\right)}$, where

$$
h_{e s}=\text { enthalpy at isentropic exit state. }
$$

Turbines, Pumps, Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. There are significant work terms and a single mass stream.

$$
\begin{gathered}
h_{i}=h_{e}+w \\
\text { Efficiency (turbine) }=\frac{h_{i}-h_{e}}{h_{i}-h_{e s}}
\end{gathered}
$$

Efficiency (compressor, pump) $=\frac{h_{e s}-h_{i}}{h_{e}-h_{i}}$
Throttling Valves and Throttling Processes: No work, no heat transfer, and single-mass stream. Velocity terms are often insignificant.

$$
h_{i}=h_{e}
$$

Boilers, Condensers, Evaporators, One Side in a Heat Exchanger: Heat transfer terms are significant. For a singlemass stream, the following applies:

$$
h_{i}+q=h_{e}
$$

Heat Exchangers: No heat or work. Two separate flow rates $\dot{m}_{1}$ and $\dot{m}_{2}$ :

$$
\dot{m}_{1}\left(h_{1 i}-h_{1 e}\right)=\dot{m}_{2}\left(h_{2 e}-h_{2 i}\right)
$$

## Mixers, Separators, Open or Closed Feedwater Heaters:

$$
\begin{aligned}
& \sum \dot{m}_{i} h_{i}=\sum \dot{m}_{e} h_{e} \quad \text { and } \\
& \sum \dot{m}_{i}=\sum \dot{m}_{e}
\end{aligned}
$$

## BASIC CYCLES

Heat engines take in heat $Q_{H}$ at a high temperature $T_{H}$, produce a net amount of work $W$, and reject heat $Q_{L}$ at a low temperature $T_{L}$. The efficiency $\eta$ of a heat engine is given by:

$$
\eta=W / Q_{H}=\left(Q_{H}-Q_{L}\right) / Q_{H}
$$

The most efficient engine possible is the Carnot Cycle. Its efficiency is given by:
$\eta_{c}=\left(T_{H}-T_{L}\right) / T_{H}$, where
$T_{H}$ and $T_{L}=$ absolute temperatures (Kelvin or Rankine).
The following heat-engine cycles are plotted on $P-v$ and $T-s$ diagrams (see page 61):

Carnot, Otto, Rankine
Refrigeration Cycles are the reverse of heat-engine cycles. Heat is moved from low to high temperature requiring work $W$. Cycles can be used either for refrigeration or as heat pumps.
Coefficient of Performance (COP) is defined as:
COP $=Q_{H} / W$ for heat pumps, and as
$\mathrm{COP}=Q_{L} / W$ for refrigerators and air conditioners.
Upper limit of COP is based on reversed Carnot Cycle:

$$
\begin{aligned}
& \mathrm{COP}_{c}=T_{H} /\left(T_{H}-T_{L}\right) \text { for heat pumps and } \\
& \mathrm{COP}_{c}=T_{L} /\left(T_{H}-T_{L}\right) \text { for refrigeration. }
\end{aligned}
$$

1 ton refrigeration $=12,000 \mathrm{Btu} / \mathrm{hr}=3,516 \mathrm{~W}$

## IDEAL GAS MIXTURES

$i=1,2, \ldots, n$ constituents. Each constituent is an ideal gas.
Mole Fraction: $N_{i}=$ number of moles of component $i$.

$$
x_{i}=N_{i} / N ; N=\Sigma N_{i} ; \Sigma x_{i}=1
$$

Mass Fraction: $y_{i}=m_{i} / m ; m=\Sigma m_{i} ; \Sigma y_{i}=1$
Molecular Weight: $M=m / N=\Sigma x_{i} M_{i}$
Gas Constant: $\mathrm{R}=\bar{R} / M$
To convert mole fractions $x_{i}$ to mass fractions $y_{i}$ :

$$
y_{i}=\frac{x_{i} M_{i}}{\sum\left(x_{i} M_{i}\right)}
$$

To convert mass fractions to mole fractions:

$$
x_{i}=\frac{y_{i} / M_{i}}{\sum\left(y_{i} / M_{i}\right)}
$$

Partial Pressures $\quad p=\sum p_{i} ; p_{i}=\frac{m_{i} R_{i} T}{V}$

Partial Volumes $\quad V=\sum V_{i} ; V_{i}=\frac{m_{i} R_{i} T}{p}$, where
$p, V, T=$ the pressure, volume, and temperature of the mixture.

$$
x_{i}=p_{i} / p=V_{i} / V
$$

## Other Properties

$u=\Sigma\left(y_{i} u_{i}\right) ; h=\Sigma\left(y_{i} h_{i}\right) ; s=\Sigma\left(y_{i} s_{i}\right)$
$u_{i}$ and $h_{i}$ are evaluated at $T$, and
$s_{i}$ is evaluated at $T$ and $p_{i}$.

## PSYCHROMETRICS

We deal here with a mixture of dry air (subscript $a$ ) and water vapor (subscript $v$ ):

$$
p=p_{a}+p_{v}
$$

Specific Humidity (absolute humidity, humidity ratio) $\omega$ :

$$
\omega=m_{v} / m_{a}, \text { where }
$$

$m_{v}=$ mass of water vapor and
$m_{a}=$ mass of dry air.

$$
\omega=0.622 p_{v} / p_{a}=0.622 p_{v} /\left(p-p_{v}\right)
$$

Relative Humidity (rh) $\phi$ :

$$
\phi=m_{v} / m_{g}=p_{v} / p_{g}, \text { where }
$$

$m_{g}=$ mass of vapor at saturation, and
$p_{g}=$ saturation pressure at $T$.
Enthalpy $h: h=h_{a}+\omega h_{v}$
Dew-Point Temperature $T_{d p}$ :

$$
T_{d p}=T_{\text {sat }} \text { at } p_{g}=p_{v}
$$

Wet-bulb temperature $T_{w b}$ is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.
Humidity Volume: Volume of moist air/mass of dry air.

## Psychrometric Chart

A plot of specific humidity as a function of dry-bulb temperature plotted for a value of atmospheric pressure. (See chart at end of section.)

## PHASE RELATIONS

Clapeyron Equation for Phase Transitions:

$$
\left(\frac{d p}{d T}\right)_{s a t}=\frac{h_{f g}}{T v_{f g}}=\frac{s_{f g}}{v_{f g}}, \text { where }
$$

$h_{f g}=$ enthalpy change for phase transitions,
$v_{f g}=$ volume change,
$s_{f g}=$ entropy change,
$T=$ absolute temperature, and
$(d P / d T)_{\text {sat }}=$ slope of vapor-liquid saturation line.

## Gibbs Phase Rule

$$
P+F=C+2, \text { where }
$$

$P=$ number of phases making up a system,
$F=$ degrees of freedom, and
$C=$ number of components in a system.

## BINARY PHASE DIAGRAMS

Allows determination of (1) what phases are present at equilibrium at any temperature and average composition, (2) the compositions of those phases, and (3) the fractions of those phases.

Eutectic reaction (liquid $\rightarrow$ two solid phases)
Eutectoid reaction (solid $\rightarrow$ two solid phases)
Peritectic reaction (liquid + solid $\rightarrow$ solid)
Pertectoid reaction (two solid phases $\rightarrow$ solid)

## Lever Rule

The following phase diagram and equations illustrate how the weight of each phase in a two-phase system can be determined:

(In diagram, $L=$ liquid) If $x=$ the average composition at temperature $T$, then

$$
\begin{aligned}
& \mathrm{wt} \% \alpha=\frac{x_{\beta}-x}{x_{\beta}-x_{\alpha}} \times 100 \\
& \text { wt } \% \beta=\frac{x-x_{\alpha}}{x_{\beta}-x_{\alpha}} \times 100
\end{aligned}
$$

## Iron-Iron Carbide Phase Diagram



## COMBUSTION PROCESSES

First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

## Combustion in Air

For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}+2(3.76) \mathrm{N}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+7.52 \mathrm{~N}_{2}$

## Combustion in Excess Air

The excess oxygen appears as oxygen on the right side of the combustion equation.

## Incomplete Combustion

Some carbon is burned to create carbon monoxide (CO).
Air-Fuel Ratio $(A / F): A / F=\frac{\text { mass of air }}{\text { mass of fuel }}$
Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.
Percent Theoretical Air $=\frac{(A / F)_{\text {actual }}}{(A / F)_{\text {stoichiometric }}} \times 100$
Percent Excess Air $=\frac{(A / F)_{\text {actual }}-(A / F)_{\text {stoichiometric }}}{(A / F)_{\text {stoichiometric }}} \times 100$

- Van Vlack, L., Elements of Materials Science \& Engineering, Addison-Wesley Publishing Co., Inc., 1989.


## SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs

$$
\Delta S_{\text {reservoir }}=Q / T_{\text {reservoir }}, \text { where }
$$

$Q$ is measured with respect to the reservoir.
Kelvin-Planck Statement of Second Law
No heat engine can operate in a cycle while transferring heat with a single heat reservoir.
COROLLARY to Kelvin-Planck: No heat engine can have a higher efficiency than a Carnot cycle operating between the same reservoirs.

## Clausius' Statement of Second Law

No refrigeration or heat pump cycle can operate without a net work input.
COROLLARY: No refrigerator or heat pump can have a higher COP than a Carnot cycle refrigerator or heat pump.

## VAPOR-LIQUID MIXTURES

## Henry's Law at Constant Temperature

At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., $x \approx 0$.

$$
p_{i}=p y_{i}=h x_{i} \text {, where }
$$

$h=$ Henry's Law constant,
$p_{i}=$ partial pressure of a gas in contact with a liquid,
$x_{i}=$ mol fraction of the gas in the liquid,
$y_{i}=$ mol fraction of the gas in the vapor, and
$p=$ total pressure.

## Raoult's Law for Vapor-Liquid Equilibrium

Valid for concentrations near 1; i.e., $x_{i} \approx 1$.

$$
p_{i}=x_{i} p_{i}^{*}, \text { where }
$$

$p_{i}=$ partial pressure of component $i$,
$x_{i}=$ mol fraction of component $i$ in the liquid, and
$p_{i}{ }^{*}=$ vapor pressure of pure component $i$ at the temperature of the mixture.

## ENTROPY

$d s=(1 / T) \delta Q_{\mathrm{rev}}$
$s_{2}-s_{1}=\int_{1}^{2}(1 / T) \delta Q_{r e v}$
Inequality of Clausius
$\oint(1 / T) \delta Q_{\text {rev }} \leq 0$
$\int_{1}^{2}(1 / T) \delta Q \leq s_{2}-s_{1}$

## Isothermal, Reversible Process

$$
\Delta s=s_{2}-s_{1}=Q / T
$$

## Isentropic Process

$$
\Delta s=0 ; d s=0
$$

A reversible adiabatic process is isentropic.
Adiabatic Process

$$
\delta Q=0 ; \Delta s \geq 0
$$

Increase of Entropy Principle

$$
\begin{aligned}
& \Delta s_{\text {total }}=\Delta s_{\text {system }}+\Delta s_{\text {surroundings }} \geq 0 \\
& \Delta \dot{s}_{\text {total }}=\sum \dot{m}_{\text {out }} s_{\text {out }}-\sum \dot{m}_{\text {in }} s_{\text {in }} \\
& \quad-\sum\left(\dot{Q}_{\text {exterral }} / T_{\text {external }}\right) \geq 0
\end{aligned}
$$

Temperature-Entropy ( $T-s$ ) Diagram


Entropy Change for Solids and Liquids

$$
\begin{aligned}
& d s=c(d T / T) \\
& s_{2}-s_{1}=\int_{c}(d T / T)=c_{\text {mean }} \ln \left(T_{2} / T_{1}\right)
\end{aligned}
$$

where $c$ equals the heat capacity of the solid or liquid.

## Irreversibility

$$
I=w_{\mathrm{rev}}-w_{\mathrm{actual}}
$$

## EXERGY

Exergy is the portion of total energy available to do work.
Closed-System Availability
(no chemical reactions)

$$
\phi=\left(u-u_{\mathrm{o}}\right)-T_{\mathrm{o}}\left(s-s_{\mathrm{o}}\right)+p_{\mathrm{o}}\left(v-v_{\mathrm{o}}\right)
$$

where the subscript " o " designates environmental conditions

$$
w_{\text {reversible }}=\phi_{1}-\phi_{2}
$$

## Open-System Availability

$$
\begin{aligned}
& \psi=\left(h-h_{0}\right)-T_{0}\left(s-s_{0}\right)+V^{2} / 2+g z \\
& w_{\text {reversible }}=\psi_{1}-\psi_{2}
\end{aligned}
$$

## Gibbs Free Energy, $\Delta \boldsymbol{G}$

Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature.

## Helmholtz Free Energy, $\Delta \boldsymbol{A}$

Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature.



| Superheated Water Tables |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ <br> Temp. | $\begin{gathered} v \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} u \\ \mathbf{k J} / \mathbf{k g} \\ \hline \end{gathered}$ | $\begin{gathered} h \\ \mathbf{k J} / \mathbf{k g} \end{gathered}$ | $\begin{gathered} S \\ \mathbf{k J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ \hline \end{gathered}$ | $\begin{gathered} v \\ \mathbf{m}^{3} / \mathbf{k g} \end{gathered}$ | $\begin{gathered} u \\ \mathbf{k J} / \mathbf{k g} \end{gathered}$ | $\begin{gathered} h \\ \mathbf{k J} / \mathbf{k g} \\ \hline \end{gathered}$ | $\begin{gathered} S \\ \mathbf{k J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ \hline \end{gathered}$ |
| ${ }^{0} \mathrm{C}$ | $p=0.01 \mathrm{MPa}\left(45.81{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $p=0.05 \mathrm{MPa}\left(81.33{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 14.674 | 2437.9 | 2584.7 | 8.1502 | 3.240 | 2483.9 | 2645.9 | 7.5939 |
| 50 | 14.869 | 2443.9 | 2592.6 | 8.1749 |  |  |  |  |
| 100 | 17.196 | 2515.5 | 2687.5 | 8.4479 | 3.418 | 2511.6 | 2682.5 | 7.6947 |
| 150 | 19.512 | 2587.9 | 2783.0 | 8.6882 | 3.889 | 2585.6 | 2780.1 | 7.9401 |
| 200 | 21.825 | 2661.3 | 2879.5 | 8.9038 | 4.356 | 2659.9 | 2877.7 | 8.1580 |
| 250 | 24.136 | 2736.0 | 2977.3 | 9.1002 | 4.820 | 2735.0 | 2976.0 | 8.3556 |
| 300 | 26.445 | 2812.1 | 3076.5 | 9.2813 | 5.284 | 2811.3 | 3075.5 | 8.5373 |
| 400 | 31.063 | 2968.9 | 3279.6 | 9.6077 | 6.209 | 2968.5 | 3278.9 | 8.8642 |
| 500 | 35.679 | 3132.3 | 3489.1 | 9.8978 | 7.134 | 3132.0 | 3488.7 | 9.1546 |
| 600 | 40.295 | 3302.5 | 3705.4 | 10.1608 | 8.057 | 3302.2 | 3705.1 | 9.4178 |
| 700 | 44.911 | 3479.6 | 3928.7 | 10.4028 | 8.981 | 3479.4 | 3928.5 | 9.6599 |
| 800 | 49.526 | 3663.8 | 4159.0 | 10.6281 | 9.904 | 3663.6 | 4158.9 | 9.8852 |
| 900 | 54.141 | 3855.0 | 4396.4 | 10.8396 | 10.828 | 3854.9 | 4396.3 | 10.0967 |
| 1000 | 58.757 | 4053.0 | 4640.6 | 11.0393 | 11.751 | 4052.9 | 4640.5 | 10.2964 |
| 1100 | 63.372 | 4257.5 | 4891.2 | 11.2288 | 12.674 | 4257.4 | 4891.1 | 10.4859 |
| 1200 | 67.987 | 4467.9 | 5147.8 | 11.4091 | 13.597 | 4467.8 | 5147.7 | 10.6662 |
| 1300 | 72.602 | 4683.7 | 5409.7 | 11.5811 | 14.521 | 4683.6 | 5409.6 | 10.8382 |
|  | $p=0.10 \mathrm{MPa}\left(99.63{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $p=0.20 \mathrm{MPa}\left(120.23{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 1.6940 | 2506.1 | 2675.5 | 7.3594 | 0.8857 | 2529.5 | 2706.7 | 7.1272 |
| 100 | 1.6958 | 2506.7 | 2676.2 | 7.3614 |  |  |  |  |
| 150 | 1.9364 | 2582.8 | 2776.4 | 7.6134 | 0.9596 | 2576.9 | 2768.8 | 7.2795 |
| 200 | 2.172 | 2658.1 | 2875.3 | 7.8343 | 1.0803 | 2654.4 | 2870.5 | 7.5066 |
| 250 | 2.406 | 2733.7 | 2974.3 | 8.0333 | 1.1988 | 2731.2 | 2971.0 | 7.7086 |
| 300 | 2.639 | 2810.4 | 3074.3 | 8.2158 | 1.3162 | 2808.6 | 3071.8 | 7.8926 |
| 400 | 3.103 | 2967.9 | 3278.2 | 8.5435 | 1.5493 | 2966.7 | 3276.6 | 8.2218 |
| 500 | 3.565 | 3131.6 | 3488.1 | 8.8342 | 1.7814 | 3130.8 | 3487.1 | 8.5133 |
| 600 | 4.028 | 3301.9 | 3704.4 | 9.0976 | 2.013 | 3301.4 | 3704.0 | 8.7770 |
| 700 | 4.490 | 3479.2 | 3928.2 | 9.3398 | 2.244 | 3478.8 | 3927.6 | 9.0194 |
| 800 | 4.952 | 3663.5 | 4158.6 | 9.5652 | 2.475 | 3663.1 | 4158.2 | 9.2449 |
| 900 | 5.414 | 3854.8 | 4396.1 | 9.7767 | 2.705 | 3854.5 | 4395.8 | 9.4566 |
| 1000 | 5.875 | 4052.8 | 4640.3 | 9.9764 | 2.937 | 4052.5 | 4640.0 | 9.6563 |
| 1100 | 6.337 | 4257.3 | 4891.0 | 10.1659 | 3.168 | 4257.0 | 4890.7 | 9.8458 |
| 1200 | 6.799 | 4467.7 | 5147.6 | 10.3463 | 3.399 | 4467.5 | 5147.5 | 10.0262 |
| 1300 | 7.260 | 4683.5 | 5409.5 | 10.5183 | 3.630 | 4683.2 | 5409.3 | 10.1982 |
|  | $p=0.40 \mathrm{MPa}\left(143.63{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $p=0.60 \mathrm{MPa}\left(158.85{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.4625 | 2553.6 | 2738.6 | 6.8959 | 0.3157 | 2567.4 | 2756.8 | 6.7600 |
| 150 | 0.4708 | 2564.5 | 2752.8 | 6.9299 |  |  |  |  |
| 200 | 0.5342 | 2646.8 | 2860.5 | 7.1706 | 0.3520 | 2638.9 | 2850.1 | 6.9665 |
| 250 | 0.5951 | 2726.1 | 2964.2 | 7.3789 | 0.3938 | 2720.9 | 2957.2 | 7.1816 |
| 300 | 0.6548 | 2804.8 | 3066.8 | 7.5662 | 0.4344 | 2801.0 | 3061.6 | 7.3724 |
| 350 |  |  |  |  | 0.4742 | 2881.2 | 3165.7 | 7.5464 |
| 400 | 0.7726 | 2964.4 | 3273.4 | 7.8985 | 0.5137 | 2962.1 | 3270.3 | 7.7079 |
| 500 | 0.8893 | 3129.2 | 3484.9 | 8.1913 | 0.5920 | 3127.6 | 3482.8 | 8.0021 |
| 600 | 1.0055 | 3300.2 | 3702.4 | 8.4558 | 0.6697 | 3299.1 | 3700.9 | 8.2674 |
| 700 | 1.1215 | 3477.9 | 3926.5 | 8.6987 | 0.7472 | 3477.0 | 3925.3 | 8.5107 |
| 800 | 1.2372 | 3662.4 | 4157.3 | 8.9244 | 0.8245 | 3661.8 | 4156.5 | 8.7367 |
| 900 | 1.3529 | 3853.9 | 4395.1 | 9.1362 | 0.9017 | 3853.4 | 4394.4 | 8.9486 |
| 1000 | 1.4685 | 4052.0 | 4639.4 | 9.3360 | 0.9788 | 4051.5 | 4638.8 | 9.1485 |
| 1100 | 1.5840 | 4256.5 | 4890.2 | 9.5256 | 1.0559 | 4256.1 | 4889.6 | 9.3381 |
| 1200 | 1.6996 | 4467.0 | 5146.8 | 9.7060 | 1.1330 | 4466.5 | 5146.3 | 9.5185 |
| 1300 | 1.8151 | 4682.8 | 5408.8 | 9.8780 | 1.2101 | 4682.3 | 5408.3 | 9.6906 |
|  | $p=0.80 \mathrm{MPa}\left(170.43^{\mathbf{0}} \mathrm{C}\right)$ |  |  |  | $p=1.00 \mathrm{MPa}\left(179.91{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| Sat. | 0.2404 | 2576.8 | 2769.1 | 6.6628 | 0.19444 | 2583.6 | 2778.1 | 6.5865 |
| 200 | 0.2608 | 2630.6 | 2839.3 | 6.8158 | 0.2060 | 2621.9 | 2827.9 | 6.6940 |
| 250 | 0.2931 | 2715.5 | 2950.0 | 7.0384 | 0.2327 | 2709.9 | 2942.6 | 6.9247 |
| 300 | 0.3241 | 2797.2 | 3056.5 | 7.2328 | 0.2579 | 2793.2 | 3051.2 | 7.1229 |
| 350 | 0.3544 | 2878.2 | 3161.7 | 7.4089 | 0.2825 | 2875.2 | 3157.7 | 7.3011 |
| 400 | 0.3843 | 2959.7 | 3267.1 | 7.5716 | 0.3066 | 2957.3 | 3263.9 | 7.4651 |
| 500 | 0.4433 | 3126.0 | 3480.6 | 7.8673 | 0.3541 | 3124.4 | 3478.5 | 7.7622 |
| 600 | 0.5018 | 3297.9 | 3699.4 | 8.1333 | 0.4011 | 3296.8 | 3697.9 | 8.0290 |
| 700 | 0.5601 | 3476.2 | 3924.2 | 8.3770 | 0.4478 | 3475.3 | 3923.1 | 8.2731 |
| 800 | 0.6181 | 3661.1 | 4155.6 | 8.6033 | 0.4943 | 3660.4 | 4154.7 | 8.4996 |
| 900 | 0.6761 | 3852.8 | 4393.7 | 8.8153 | 0.5407 | 3852.2 | 4392.9 | 8.7118 |
| 1000 | 0.7340 | 4051.0 | 4638.2 | 9.0153 | 0.5871 | 4050.5 | 4637.6 | 8.9119 |
| 1100 | 0.7919 | 4255.6 | 4889.1 | 9.2050 | 0.6335 | 4255.1 | 4888.6 | 9.1017 |
| 1200 | 0.8497 | 4466.1 | 5145.9 | 9.3855 | 0.6798 | 4465.6 | 5145.4 | 9.2822 |
| 1300 | 0.9076 | 4681.8 | 5407.9 | 9.5575 | 0.7261 | 4681.3 | 5407.4 | 9.4543 |

## $P$ - $h$ DIAGRAM FOR REFRIGERANT HFC-134a

(metric units)
(Reproduced by permission of the DuPont Company)
(ıeq) $\partial$ ınssèd $_{d}$


ASHRAE PSYCHROMETRIC CHART NO. 1
(metric units)
Reproduced by permission of ASHRAE


## HEAT CAPACITY TABLES

(at Room Temperature)

| HEAT CAPACITY OF GASES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substance | $\begin{gathered} \text { Mol } \\ \text { wt } \end{gathered}$ | $c_{p}$ |  | $c_{v}$ |  | $k$ |
|  |  | kJ/(kg•K) | Btu/(lbm- ${ }^{\text {a }}$ ) | kJ/(kg.K) | Btu/(lbm- ${ }^{\text {a }}$ ) |  |
| Gases |  |  |  |  |  |  |
| Air | 29 | 1.00 | 0.240 | 0.718 | 0.171 | 1.40 |
| Argon | 40 | 0.520 | 0.125 | 0.312 | 0.0756 | 1.67 |
| Butane | 58 | 1.72 | 0.415 | 1.57 | 0.381 | 1.09 |
| Carbon dioxide | 44 | 0.846 | 0.203 | 0.657 | 0.158 | 1.29 |
| Carbon monoxide | 28 | 1.04 | 0.249 | 0.744 | 0.178 | 1.40 |
| Ethane | 30 | 1.77 | 0.427 | 1.49 | 0.361 | 1.18 |
| Helium | 4 | 5.19 | 1.25 | 3.12 | 0.753 | 1.67 |
| Hydrogen | 2 | 14.3 | 3.43 | 10.2 | 2.44 | 1.40 |
| Methane | 16 | 2.25 | 0.532 | 1.74 | 0.403 | 1.30 |
| Neon | 20 | 1.03 | 0.246 | 0.618 | 0.148 | 1.67 |
| Nitrogen | 28 | 1.04 | 0.248 | 0.743 | 0.177 | 1.40 |
| Octane vapor | 114 | 1.71 | 0.409 | 1.64 | 0.392 | 1.04 |
| Oxygen | 32 | 0.918 | 0.219 | 0.658 | 0.157 | 1.40 |
| Propane | 44 | 1.68 | 0.407 | 1.49 | 0.362 | 1.12 |
| Steam | 18 | 1.87 | 0.445 | 1.41 | 0.335 | 1.33 |


| HEAT CAPACITY OF SELECTED LIQUIDS AND SOLIDS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Substance | $c_{P}$ |  | Density |  |
|  | kJ/(kg.K) | Btu/(lbm- ${ }^{\text {a }}$ ) | kg/m ${ }^{3}$ | $\mathbf{l b m} / \mathbf{f t}^{\mathbf{3}}$ |
| Liquids |  |  |  |  |
| Ammonia <br> Mercury <br> Water | $\begin{aligned} & 4.80 \\ & 0.139 \\ & 4.18 \end{aligned}$ | $\begin{aligned} & 1.146 \\ & 0.033 \\ & 1.000 \end{aligned}$ | $\begin{array}{r} 602 \\ 13,560 \\ 997 \end{array}$ | $\begin{gathered} 38 \\ 847 \\ 62.4 \end{gathered}$ |
| Solids |  |  |  |  |
| Aluminum <br> Copper <br> Ice $\quad\left(0^{\circ} \mathrm{C}\right.$; <br> $32^{\circ} \mathrm{F}$ ) <br> Iron <br> Lead | $\begin{aligned} & 0.900 \\ & 0.386 \\ & 2.11 \\ & 0.450 \\ & 0.128 \end{aligned}$ | $\begin{aligned} & 0.215 \\ & 0.092 \\ & 0.502 \\ & 0.107 \\ & 0.030 \end{aligned}$ | $\begin{array}{r} 2,700 \\ 8,900 \\ 917 \\ 7,840 \\ 11,310 \end{array}$ | $\begin{gathered} \hline 170 \\ 555 \\ 57.2 \\ 490 \\ 705 \end{gathered}$ |

## HEAT TRANSFER

There are three modes of heat transfer: conduction, convection, and radiation. Boiling and condensation are classified as convection.

## CONDUCTION

Fourier's Law of Conduction

$$
\dot{Q}=-k A(d T / d x) \text {., where }
$$

$\dot{Q}=$ rate of heat transfer.

## Conduction Through a Plane Wall:


$\dot{Q}=-k A\left(T_{2}-T_{1}\right) / L$, where
$k=$ the thermal conductivity of the wall,
$A=$ the wall surface area,
$L=$ the wall thickness, and
$T_{1}, T_{2}=$ the temperature on the near side and far side of the wall respectively.
Thermal resistance of the wall is given by

$$
R=L /(k A)
$$

Resistances in series are added.
Composite Walls:

$R_{\text {total }}=R_{1}+R_{2}$, where
$R_{1}=L_{1} /\left(k_{1} A\right)$, and
$R_{2}=L_{2}\left(k_{2} A\right)$.

To Evaluate Surface or Intermediate Temperatures:

$$
T_{2}=T_{1}-\dot{Q} R_{1} ; T_{3}=T_{2}-\dot{Q} R_{2}
$$

Conduction through a cylindrical wall is given by


$$
\begin{aligned}
& \dot{Q}=\frac{2 \pi k L\left(T_{1}-T_{2}\right)}{\ln \left(r_{2} / r_{1}\right)} \\
& R=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k L}
\end{aligned}
$$

## CONVECTION

Convection is determined using a convection coefficient (heat transfer coefficient) $h$.

$$
\dot{Q}=h A\left(T_{w}-T_{\infty}\right) \text {, where }
$$

$A=$ the heat transfer area,
$T_{w}=$ wall temperature, and
$T_{\infty}=$ bulk fluid temperature.
Resistance due to convection is given by

$$
R=1 /(h A)
$$

FINS: For a straight fin,

$$
\dot{Q}=\sqrt{h p k A_{c}}\left(T_{b}-T_{\infty}\right) \tanh m L_{c} \text {, where }
$$

$h=$ heat transfer coefficient,
$p=$ exposed perimeter,
$k=$ thermal conductivity,
$A_{c}=$ cross-sectional area,
$T_{\mathrm{b}}=$ temperature at base of fin,
$T_{\infty}=$ fluid temperature,
$m=\sqrt{h p /\left(k A_{c}\right)}$, and
$L_{c}=L+A_{c} / p$, corrected length.


## RADIATION

The radiation emitted by a body is given by

$$
\dot{Q}=\varepsilon \sigma A T^{4}, \text { where }
$$

$T=$ the absolute temperature $\left(\mathrm{K}\right.$ or $\left.{ }^{\circ} \mathrm{R}\right)$,
$\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)$

$$
\left[0.173 \times 10^{-8} \mathrm{Btu} /\left(\mathrm{hr}^{\left.\left.-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4}\right)\right], ~}\right.\right.
$$

$\varepsilon=$ the emissivity of the body, and
$A=$ the body surface area.
For a body (1) which is small compared to its surroundings (2)

$$
\dot{Q}_{12}=\varepsilon \sigma A\left(T_{1}^{4}-T_{2}^{4}\right), \text { where }
$$

$\dot{Q}_{12}=$ the net heat transfer rate from the body.
A black body is defined as one which absorbs all energy incident upon it. It also emits radiation at the maximum rate for a body of a particular size at a particular temperature. For such a body

$$
\alpha=\varepsilon=1, \text { where }
$$

$\alpha=$ the absorptivity (energy absorbed/incident energy).
A gray body is one for which $\alpha=\varepsilon$, where

$$
0<\alpha<1 ; 0<\varepsilon<1
$$

Real bodies are frequently approximated as gray bodies.
The net energy exchange by radiation between two black bodies, which see each other, is given by

$$
\dot{Q}_{12}=A_{1} F_{12} \sigma\left(T_{1}^{4}-T_{2}^{4}\right), \text { where }
$$

$F_{12}=$ the shape factor (view factor, configuration factor); $0 \leq F_{12} \leq 1$.

For any body, $\alpha+\rho+\tau=1$, where
$\alpha=$ absorptivity,
$\rho=$ reflectivity (ratio of energy reflected to incident energy), and
$\tau=$ transmissivity (ratio of energy transmitted to incident energy).
For an opaque body, $\alpha+\rho=1$
For a gray body, $\quad \varepsilon+\rho=1$

## HEAT EXCHANGERS

The overall heat-transfer coefficient for a shell-and-tube heat exchanger is
$\frac{1}{U A}=\frac{1}{h_{i} A_{i}}+\frac{R_{f i}}{A_{i}}+\frac{t}{k A_{\text {avg }}}+\frac{R_{f o}}{A_{o}}+\frac{1}{h_{o} A_{o}}$, where
$A=$ any convenient reference area $\left(\mathrm{m}^{2}\right)$,
$A_{\text {avg }}=$ average of inside and outside area (for thin-walled tubes) ( $\mathrm{m}^{2}$ ),
$A_{i}=$ inside area of tubes $\left(\mathrm{m}^{2}\right)$,
$A_{o}=$ outside area of tubes $\left(\mathrm{m}^{2}\right)$,
$h_{i}=$ heat-transfer coefficient for inside of tubes
[ $\left.\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$h_{o}=$ heat-transfer coefficient for outside of tubes
$\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$k=$ thermal conductivity of tube material $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$R_{f i}=$ fouling factor for inside of tube $\left(\mathrm{m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$,
$R_{f o}=$ fouling factor for outside of tube $\left(\mathrm{m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$,
$t=$ tube-wall thickness (m), and
$U=$ overall heat-transfer coefficient based on area $A$ and the log mean temperature difference $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$.
The log mean temperature difference (LMTD) for countercurrent flow in tubular heat exchangers is

$$
\Delta T_{l m}=\frac{\left(T_{H o}-T_{C i}\right)-\left(T_{H i}-T_{C o}\right)}{\ln \left(\frac{T_{H o}-T_{C i}}{T_{H i}-T_{C o}}\right)}
$$

The log mean temperature difference for concurrent (parallel) flow in tubular heat exchangers is

$$
\Delta T_{l m}=\frac{\left(T_{H o}-T_{C o}\right)-\left(T_{H i}-T_{C i}\right)}{\ln \left(\frac{T_{H o}-T_{C o}}{T_{H i}-T_{C i}}\right)} \text {, where }
$$

$\Delta T_{l m}=\log$ mean temperature difference $(\mathrm{K})$,
$T_{H i}=$ inlet temperature of the hot fluid (K),
$T_{H o}=$ outlet temperature of the hot fluid (K),
$T_{C i}=$ inlet temperature of the cold fluid (K), and
$T_{C o}=$ outlet temperature of the cold fluid (K).
For individual heat-transfer coefficients of a fluid being heated or cooled in a tube, one pair of temperatures (either the hot or the cold) are the surface temperatures at the inlet and outlet of the tube.

Heat exchanger effectiveness

$$
\begin{aligned}
& =\frac{\text { actual heat transfer }}{\max \text { possible heat transfer }}=\frac{\mathrm{q}}{\mathrm{q}_{\max }} \\
& \varepsilon=\frac{C_{H}\left(T_{H i}-T_{H o}\right)}{C_{\min }\left(T_{H i}-T_{C i}\right)} \\
& \varepsilon=\frac{C_{C}\left(T_{C o}-T_{C i}\right)}{C_{\min }\left(T_{H i}-T_{C i}\right)}
\end{aligned}
$$

Where $C_{\text {min }}=$ smaller of $C_{c}$ or $C_{H}$ and $C=\dot{m} c_{p}$
Number of transfer units, NTU $=\frac{U A}{C_{\text {min }}}$
At a cross-section in a tube where heat is being transferred

$$
\begin{aligned}
\frac{\dot{Q}}{A} & =h\left(T_{w}-T_{b}\right)=\left[k_{f}\left(\frac{d t}{d r}\right)_{w}\right]_{\text {fluid }} \\
& =\left[k_{m}\left(\frac{d t}{d r}\right)_{w}\right]_{\text {metal }}, \text { where }
\end{aligned}
$$

$\dot{Q} / A=$ local inward radial heat flux $\left(\mathrm{W} / \mathrm{m}^{2}\right)$,
$h \quad=$ local heat-transfer coefficient $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$k_{f} \quad=$ thermal conductivity of the fluid $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$k_{m} \quad=$ thermal conductivity of the tube metal [W/(m•K)],
$(d t / d r)_{w}=$ radial temperature gradient at the tube surface ( $\mathrm{K} / \mathrm{m}$ ),
$T_{b} \quad=$ local bulk temperature of the fluid (K), and
$T_{w} \quad=$ local inside surface temperature of the tube (K).

## RATE OF HEAT TRANSFER IN A TUBULAR HEAT EXCHANGER

For the equations below, the following definitions along with definitions previously supplied are required.
$\mathrm{D}=$ inside diameter
$\mathrm{Gz}=$ Graetz number $[\operatorname{RePr}(D / L)]$,
$\mathrm{Nu}=$ Nusselt number $(h D / k)$,
$\operatorname{Pr}=$ Prandtl number $\left(c_{P} \mu / k\right)$,
$A=$ area upon which $U$ is based $\left(\mathrm{m}^{2}\right)$,
$F=$ configuration correction factor,
$g=$ acceleration of gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$,
$L=$ heated (or cooled) length of conduit or surface (m),
$\dot{Q}=$ inward rate of heat transfer (W),
$T_{s}=$ temperature of the surface $(\mathrm{K})$,
$T_{s v}=$ temperature of saturated vapor (K), and
$\lambda=$ heat of vaporization $(\mathrm{J} / \mathrm{kg})$.
$\dot{Q}=U A F \Delta T_{l m}$

Heat-transfer for laminar flow ( $\operatorname{Re}<2,000$ ) in a closed conduit.

$$
\mathrm{Nu}=3.66+\frac{0.19 \mathrm{Gz}^{0.8}}{1+0.117 \mathrm{Gz}^{0.467}}
$$

Heat-transfer for turbulent flow $\left(\operatorname{Re}>10^{4}, \operatorname{Pr}>0.7\right)$ in a closed conduit (Sieder-Tate equation).

$$
\mathrm{Nu}=\frac{\mathrm{h}_{\mathrm{i}} \mathrm{D}}{\mathrm{k}_{\mathrm{f}}}=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{1 / 3}\left(\mu_{b} / \mu_{w}\right)^{0.14}, \text { where }
$$

$\mu_{b}=\mu\left(T_{b}\right)$, and
$\mu_{w}=\mu\left(T_{w}\right)$, and Re and $\operatorname{Pr}$ are evaluated at $T_{b}$.
For non-circular ducts, use the equivalent diameter.
The equivalent diameter is defined as

$$
\mathrm{D}_{\mathrm{H}}=\frac{4(\text { cross }- \text { sectional area })}{\text { wetted perimeter }}
$$

For a circular annulus $\left(\mathrm{D}_{\mathrm{o}}>\mathrm{D}_{\mathrm{i}}\right)$ the equivalent diameter is

$$
D_{H}=D_{o}-D_{i}
$$

For liquid metals $(0.003<\operatorname{Pr}<0.05)$ flowing in closed conduits.
$\mathrm{Nu}=6.3+0.0167 \operatorname{Re}^{0.85} \operatorname{Pr}^{0.93}$ (constant heat flux)
$\mathrm{Nu}=7.0+0.025 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.8}$ (constant wall temperature)
Heat-transfer coefficient for condensation of a pure vapor on a vertical surface.

$$
\frac{h L}{k}=0.943\left(\frac{L^{3} \rho^{2} g \lambda}{k \mu\left(T_{s v}-T_{s}\right)}\right)^{0.25}
$$

Properties other than $\lambda$ are for the liquid and are evaluated at the average between $T_{s v}$ and $T_{s}$.

For condensation outside horizontal tubes, change 0.943 to 0.73 and replace $L$ with the tube outside diameter.

## HEAT TRANSFER TO/FROM BODIES IMMERSED IN A LARGE BODY OF FLOWING FLUID

In all cases, evaluate fluid properties at average temperature between that of the body and that of the flowing fluid.

For flow parallel to a constant-temperature flat plate of length $L$ (m)

| $\mathrm{Nu}=0.648 \operatorname{Re}^{0.5} \operatorname{Pr}^{1 / 3}$ | $\left(\operatorname{Re}<10^{5}\right)$ |
| :--- | :--- |
| $\mathrm{Nu}=0.0366 \operatorname{Re}^{0.8} \operatorname{Pr}^{1 / 3}$ | $\left(\operatorname{Re}>10^{5}\right)$ |

Use the plate length in the evaluation of the Nusselt and Reynolds numbers.
For flow perpendicular to the axis of a constant-temperature circular cylinder
$\mathrm{Nu}=c \operatorname{Re}^{n} \operatorname{Pr}^{1 / 3}$
(values of $c$ and $n$ follow)

Use the cylinder diameter in the evaluation of the Nusselt and Reynolds numbers.

| $\boldsymbol{R e}$ | $\boldsymbol{n}$ | $\boldsymbol{c}$ |
| :---: | :---: | :---: |
| $1-4$ | 0.330 | 0.989 |
| $4-40$ | 0.385 | 0.911 |
| $40-4,000$ | 0.466 | 0.683 |
| $4,000-40,000$ | 0.618 | 0.193 |
| $40,000-250,000$ | 0.805 | 0.0266 |

For flow past a constant-temperature sphere.

$$
\mathrm{Nu}=2.0+0.60 \operatorname{Re}^{0.5} \operatorname{Pr}^{1 / 3}
$$

$(1<\operatorname{Re}<70,000,0.6<\operatorname{Pr}<400)$
Use the sphere diameter in the evaluation of the Nusselt and Reynolds numbers.

## Conductive Heat Transfer

Steady Conduction with Internal Energy Generation
For one-dimensional steady conduction, the equation is

$$
d^{2} T / d x^{2}+\dot{Q}_{g e n} / k=0, \text { where }
$$

$\dot{Q}_{\text {gen }}=$ the heat generation rate per unit volume, and
$k=$ the thermal conductivity.
For a plane wall:

$T(x)=\frac{\dot{Q}_{\mathrm{gen}} L^{2}}{2 \mathrm{k}}\left(1-\frac{x^{2}}{L^{2}}\right)+\left(\frac{T_{s 2}-T_{s 1}}{2}\right)\left(\frac{x}{L}\right)+\left(\frac{T_{s 1}+T_{s 2}}{2}\right)$
$\dot{Q}_{1}^{\prime \prime}+\dot{Q}_{2}^{\prime \prime}=2 \dot{Q}_{\text {gen }} L$, where
$\dot{Q}_{1}^{\prime \prime}=k(d T / d x)_{-L}$
$\dot{Q}_{2}^{\prime \prime}=-k(d T / d x)_{L}$
For a long circular cylinder:


$$
\begin{aligned}
& \frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)+\frac{\dot{Q}_{\mathrm{gen}}}{k}=0 \\
& T(r)=\frac{\dot{Q}_{\mathrm{gen}} r_{0}^{2}}{4 k}\left(1-\frac{r^{2}}{r_{0}^{2}}\right)+T_{s} \\
& \dot{Q}^{\prime}=\pi r_{0}^{2} \dot{Q}_{\mathrm{gen}}, \text { where }
\end{aligned}
$$

$\dot{Q}^{\prime}=$ the heat-transfer rate from the cylinder per unit length.
Transient Conduction Using the Lumped Capacitance Method


If the temperature may be considered uniform within the body at any time, the change of body temperature is given by

$$
\dot{Q}=h A_{s}\left(T-T_{\infty}\right)=-\rho c_{p} V(d T / d t)
$$

The temperature variation with time is

$$
T-T_{\infty}=\left(T_{i}-T_{\infty}\right) \mathrm{e}^{-\left(h d_{s} / \rho c_{p} V\right) t}
$$

The total heat transferred up to time $t$ is
$Q_{\text {total }}=\rho c_{P} V\left(T_{i}-T\right)$, where
$\rho=$ density,
$V=$ volume,
$c_{P}=$ heat capacity,
$t=$ time,
$A_{s}=$ surface area of the body,
$T=$ temperature, and
$h=$ the heat-transfer coefficient.
The lumped capacitance method is valid if
Biot number $=\mathrm{Bi}=h V / k A_{s} \ll 1$

If the ambient fluid temperature varies periodically according to the equation
$T_{\infty}=T_{\infty, \text { mean }}+\frac{1}{2}\left(T_{\infty}\right.$, max $\left.-T_{\infty},{ }_{\text {min }}\right) \cos \omega t$
the temperature of the body, after initial transients have died away, is
$T=\frac{\beta c_{2}}{\sqrt{\omega^{2}+\beta^{2}}} \cos \left[\omega t-\tan ^{-1} \frac{\omega}{\beta}\right]+c_{1}$, where
$c_{1}=T_{\infty}$, mean
$c_{2}=\frac{1}{2}\left(T_{\infty}, \max -T_{\infty}\right.$, min $)$
$\beta=\frac{h A_{s}}{\rho c_{p} V}$

## Natural (Free) Convection

For free convection between a vertical flat plate (or a vertical cylinder of sufficiently large diameter) and a large body of stationary fluid,
$h=C(k / L) \mathrm{Ra}_{L}{ }^{n}$, where
$L=$ the length of the plate in the vertical direction,
$\operatorname{Ra}_{L}=\quad$ Rayleigh Number $=\frac{g \beta\left(T_{s}-T_{\infty}\right) L^{3}}{v^{2}} \operatorname{Pr}$,
$T_{s}=$ surface temperature,
$T_{\infty}=$ fluid temperature,
$\beta=$ coefficient of thermal expansion ( $\frac{2}{T_{s}+T_{\infty}}$ for an ideal gas where $T$ is absolute temperature), and
$v=$ kinematic viscosity.

| Range of Ra $_{\boldsymbol{L}}$ | $\boldsymbol{C}$ | $\boldsymbol{n}$ |
| :---: | :---: | :---: |
| $10^{4}-10^{9}$ | 0.59 | $1 / 4$ |
| $10^{9}-10^{13}$ | 0.10 | $1 / 3$ |

For free convection between a long horizontal cylinder and a large body of stationary fluid

$$
\begin{array}{r}
h=C(k / D) \mathrm{Ra}_{D}^{n}, \text { where } \\
\mathrm{Ra}_{D}=\frac{g \beta\left(T_{s}-T_{\infty}\right) D^{3}}{v^{2}} \mathrm{Pr}
\end{array}
$$

| Range of Ra $_{\boldsymbol{D}}$ | $\boldsymbol{C}$ | $\boldsymbol{n}$ |
| :---: | :---: | :---: |
| $10^{-3}-10^{2}$ | 1.02 | 0.148 |
| $10^{2}-10^{4}$ | 0.850 | 0.188 |
| $10^{4}-10^{7}$ | 0.480 | 0.250 |
| $10^{7}-10^{12}$ | 0.125 | 0.333 |

## Radiation

## Two-Body Problem

Applicable to any two diffuse-gray surfaces that form an enclosure.

$$
\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{12}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}
$$

Generalized Cases


One-dimensional geometry with low-emissivity shield inserted between two parallel plates.


$$
\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{13}}+\frac{1-\varepsilon_{3,1}}{\varepsilon_{3,1} A_{3}}+\frac{1-\varepsilon_{3,2}}{\varepsilon_{3,2} A_{3}}+\frac{1}{A_{3} F_{32}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}
$$

Shape Factor Relations
Reciprocity relations:

$$
A_{i} F_{i j}=A_{j} F_{j i}
$$

Summation rule:

$$
\sum_{j=1}^{N} F_{i j}=1
$$

## Reradiating Surface

Reradiating surfaces are considered to be insulated, or adiabatic ( $\left.\dot{Q}_{R}=0\right)$.

$\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{12}+\left[\left(\frac{1}{A_{1} F_{1 R}}\right)+\left(\frac{1}{A_{2} F_{2 R}}\right)\right]^{-1}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}}$

## TRANSPORT PHENOMENA

## MOMENTUM, HEAT, AND MASS TRANSFER ANALOGY

For the equations which apply to turbulent flow in circular tubes, the following definitions apply:
$\mathrm{Nu}=$ Nusselt Number $\left[\frac{h D}{k}\right]$
Pr $=$ Prandtl Number $\left(c_{P} \mu / k\right)$,
Re $=$ Reynolds Number ( $D V \rho / \mu$ ),
Sc $=$ Schmidt Number $\left[\mu /\left(\rho D_{m}\right)\right]$,
Sh $=$ Sherwood Number $\left(k_{m} D / D_{m}\right)$,
St $=$ Stanton Number $\left[h /\left(c_{p} G\right)\right]$,
$c_{m}=$ concentration ( $\mathrm{mol} / \mathrm{m}^{3}$ ),
$c_{P}=$ heat capacity of fluid [J/ $\left.\left.\mathrm{kg} \cdot \mathrm{K}\right)\right]$,
$D=$ tube inside diameter (m),
$D_{m}=$ diffusion coefficient $\left(\mathrm{m}^{2} / \mathrm{s}\right)$,
$\left(d c_{m} / d y\right)_{w}=$ concentration gradient at the wall $\left(\mathrm{mol} / \mathrm{m}^{4}\right)$,
$(d T / d y)_{w}=$ temperature gradient at the wall $(\mathrm{K} / \mathrm{m})$,
$(d v / d y)_{w}=$ velocity gradient at the wall $\left(\mathrm{s}^{-1}\right)$,
$f=$ Moody friction factor,
$G=$ mass velocity $\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$,
$h=$ heat-transfer coefficient at the wall $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$k=$ thermal conductivity of fluid $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$k_{m}=$ mass-transfer coefficient (m/s),
$L=$ length over which pressure drop occurs (m),
$(N / A)_{w}=$ inward mass-transfer flux at the wall $\left[\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$,
$(\dot{Q} / A)_{w}=$ inward heat-transfer flux at the wall $\left(\mathrm{W} / \mathrm{m}^{2}\right)$,
$y=$ distance measured from inner wall toward centerline (m),
$\Delta c_{m}=$ concentration difference between wall and bulk fluid $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$,
$\Delta T=$ temperature difference between wall and bulk fluid (K),
$\mu=$ absolute dynamic viscosity $\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$, and
$\tau_{w}=$ shear stress (momentum flux) at the tube wall ( $\mathrm{N} / \mathrm{m}^{2}$ ).
Definitions already introduced also apply.

Rate of transfer as a function of gradients at the wall
Momentum Transfer:

$$
\tau_{w}=-\mu\left(\frac{d v}{d y}\right)_{w}=-\frac{f \rho V^{2}}{8}=\left(\frac{D}{4}\right)\left(-\frac{\Delta p}{L}\right)_{f}
$$

Heat Transfer:

$$
\left(\frac{\dot{Q}}{A}\right)_{w}=-k\left(\frac{d T}{d y}\right)_{w}
$$

Mass Transfer in Dilute Solutions:

$$
\left(\frac{N}{A}\right)_{w}=-D_{m}\left(\frac{d c_{m}}{d y}\right)_{w}
$$

Rate of transfer in terms of coefficients
Momentum Transfer:

$$
\tau_{w}=\frac{f \rho V^{2}}{8}
$$

Heat Transfer:

$$
\left(\frac{\dot{Q}}{A}\right)_{w}=h \Delta T
$$

Mass Transfer:

$$
\left(\frac{N}{A}\right)_{w}=k_{m} \Delta c_{m}
$$

Use of friction factor $(f)$ to predict heat-transfer and masstransfer coefficients (turbulent flow)
Heat Transfer:

$$
j_{H}=\left(\frac{\mathrm{Nu}}{\operatorname{RePr}}\right) \operatorname{Pr}^{2 / 3}=\frac{f}{8}
$$

Mass Transfer:

$$
j_{M}=\left(\frac{\mathrm{Sh}}{\operatorname{ReSc}}\right) \mathrm{Sc}^{2 / 3}=\frac{f}{8}
$$

## BIOLOGY

For more information on Biology see the ENVIRONMENTAL ENGINEERING section.

## CELLULAR BIOLOGY



- Primary subdivisions of biological organisms

| Group | Cell <br> structure | Properties | Constituent groups |
| :---: | :---: | :---: | :---: |
| Eucaryotes | Eucaryotic | Multicellular; extensive <br> differentiation of cells <br> and tissues <br> Unicelluar, coenocytic or <br> mycelial; little or no <br> tissue differentiation | Plants (seed plants, ferns, <br> mosses) <br> Animals (vertebrates, <br> invertebrates) <br> Protists (algae, fungi, <br> protozoa) |
| Eubacteria | Procaryotic | Cell chemistry similar to <br> eucaryotes <br> Distinctive cell chemistry | Most bacteria |
| Archaebacteria | Procaryotic |  | Methanogens, halophiles, <br> thermoacidophiles |

- Organismal Growth in Batch Culture


Exponential (log) growth with constant specific growth rate, $\mu$

$$
\mu=\left(\frac{1}{x}\right)\left(\frac{d x}{d t}\right)
$$

where,
$x=$ the cell/organism number or cell/organism concentration
t $=$ time (hr)
$\mu=$ the specific growth rate $\left(\right.$ time ${ }^{-1}$ ) while in the exponential growth phase.

Logistic Growth-Batch Growth including initial into stationary phase

$$
\begin{aligned}
& \frac{d x}{d t}=k x\left(1-\frac{x}{x_{\infty}}\right) \\
& x=\frac{x_{o} \mathrm{e}^{k t}}{1-\frac{x_{o}}{x_{\infty}}\left(1-\mathrm{e}^{k t}\right)}
\end{aligned}
$$

where,

$$
\begin{aligned}
k & =\text { logistic growth constant }\left(\mathrm{h}^{-1}\right), \\
x_{0} & =\text { initial concentration }(\mathrm{g} / \mathrm{l}) \\
x_{\infty} & =\text { carrying capacity }(\mathrm{g} / \mathrm{l}) .
\end{aligned}
$$

- Shuler, Michael L., \& Fikret Kargi, Bioprocess Engineering Basic Concepts, Prentice Hall PTR, New Jersey, 1992.
- Stanier, Roger; Adelberg, Edward A; Wheelis, Mark L; Decastells; Painter, Page R; Ingraham, John L; The Microbial World, 5th ed., 1986. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.
- Davis, M.L., Principles of Environmental Engineering, McGraw-Hill, New York, 2004. Used with permission.


## Characteristics of selected microbial cells

| Organism genus or type | Type | Metabolism ${ }^{1}$ | $\underset{\text { reaction }}{ }{ }^{\text {Gram }}$ | Morphological characteristics ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| Escherichia | Bacteria | Chemoorganotroph-facultative | Negative | Rod-may or may not be motile, variable extracellular material |
| Enterobacter | Bacteria | Chemoorganotroph-facultative | Negative | Rod-motile; significant extracellular material |
| Bacillus | Bacteria | Chemoorganotroph-aerobic | Positive | Rod-usually motile; spore; can be significant extracellular material |
| Lactobacillus | Bacteria | Chemoorganotroph-facultative | Variable | Rod-chains-usually nonmotile; little extracellular material |
| Staphylococcus | Bacteria | Chemoorganotroph-facultative | Positive | Cocci-nonmotile; moderate extracellular material |
| Nitrobacter | Bacteria | Chemoautotroph-aerobic; can use nitrite as electron donor | Negative | Short rod-usually nonmotile; little extracellular material |
| Rhizobium | Bacteria | Chemoorganotroph-aerobic; nitrogen fixing | Negative | Rods-motile; copious extracellular slime |
| Pseudomonas | Bacteria | Chemoorganotroph-aerobic and some chemolithotroph facultative (using $\mathrm{NO}_{3}$ as electron acceptor) | Negative | Rods-motile; little extracellular slime |
| Thiobacillus | Bacteria | Chemoautotroph-facultative | Negative | Rods-motile; little extracellular slime |
| Clostridium | Bacteria | Chemoorganotroph-anaerobic | Positive | Rods-usually motile; spore; some extracellular slime |
| Methanobacterium | Bacteria | Chemoautotroph-anaerobic | Unknown | Rods or cocci-motility unknown; some extracellular slime |
| Chromatium | Bacteria | Photoautotroph-anaerobic | N/A | Rods-motile; some extracellular material |
| Spirogyra | Alga | Photoautotroph-aerobic | N/A | Rod/filaments; little extracellular material |
| Aspergillus | Mold | Chemoorganotroph-aerobic and facultative | -- | Filamentous fan-like or cylindrical conidia and various spores |
| Candida | Yeast | Chemoorganotroph-aerobic and facultative | -- | Usually oval, but can form elongated cells, mycelia and various spores |
| Saccharomyces | Yeast | Chemoorganotroph-facultative | -- | Spherical or ellipsoidal; reproduced by budding; can form various spores |
| ${ }^{1}$ Aerobic - requires or can use oxygen as an electron receptor. <br> Facultative - can vary the electron receptor from oxygen to organic materials. <br> Anaerobic - organic or inorganics other than oxygen serve as electron acceptor. <br> Chemoorganotrophs - derive energy and carbon from organic materials. <br> Chemoautotrophs - derive energy from organic carbons and carbon from carbon dioxide. Some species can also derive energy from inorganic sources. <br> Photolithotrophs - derive energy from light and carbon from $\mathrm{CO}_{2}$. May be aerobic or anaerobic. <br> ${ }^{2}$ Gram negative indicates a complex cell wall with a lipopolychaccharide outer layer; Gram positive indicates a less complicated cell wall with a peptide-based outer layer. <br> ${ }^{3}$ Extracellular material production usually increases with reduced oxygen levels (e.g., facultative). Carbon source also affects production; extracellular material may be polysaccharides and/or proteins; statements above are to be understood as general in nature. |  |  |  |  |

Pelczar, M.J., R.D. Reid, and E.C.S. Chan, Microbiology. McGraw-Hill, 1977.

## Stoichiometry of Selected Biological Systems

Aerobic Production of Biomass and a Single Extracellular Product
$\mathrm{CH}_{\mathrm{m}} \mathrm{O}_{\mathrm{n}}+\mathrm{aO}_{2}+\mathrm{bNH}_{3} \rightarrow \mathrm{cCH}_{\alpha} \mathrm{O}_{\beta} \mathrm{N}_{\delta}+\mathrm{dCH}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}+\mathrm{eH}_{2} \mathrm{O}+\mathrm{fCO}_{2}$
Substrate Biomass Product
Degrees of Reduction (available electrons per unit of carbon)
$\gamma_{s}=4+m-2 n$
$\gamma_{b}=4+\alpha-2 \beta-3 \delta$
$\gamma_{p}=4+x-2 y-3 z$
Subscripts refer to substrate $(s)$, biomass $(b)$ or product $(p)$.
A high degree of reduction denotes a low degree of oxidation
Carbon balance

$$
\mathrm{c}+\mathrm{d}+\mathrm{f}=1
$$

Nitrogen balance

$$
c \delta+d z=b
$$

Electron balance

$$
c \gamma_{b}+b \gamma_{p}=\gamma_{s}-4 a
$$

Energy Balance

$$
Q_{o} C \gamma_{b}+Q_{o} d \gamma_{p}=Q_{o} \gamma_{s}-Q_{o} 4 a
$$

$Q_{o}=$ heat evolved per equivalent of available electrons
$Q_{o} \cong 26.95 \mathrm{k} \mathrm{cal} / \mathrm{gm}$ of electron
Respiratory quotient ( RQ ) is the $\mathrm{CO}_{2}$ produced per unit of $\mathrm{O}_{2}$

$$
R Q=\frac{f}{a}
$$

Yield coefficient $=c$ (grams of cells per gram substrate, $\mathrm{Y}_{\mathrm{X} / \mathrm{S}}$ ) or $=\mathrm{d}$ (grams of product per gram substrate, $\mathrm{Y}_{\mathrm{X} / \mathrm{XP}}$ )
Satisfying the carbon, nitrogen and electron balances plus knowledge of the respiratory coefficient and a yield coefficient is sufficient to solve for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and f coefficients.

Composition data for biomass and selected organic compounds

| COMPOUND | MOLECULAR FORMULA | DEGREE OF <br> REDUCTION, $\gamma$ | WEIGHT, m |
| :--- | :--- | :--- | :---: |
| BIOMASS | $\mathrm{CH}_{164} \mathrm{~N}_{0}{ }_{16} \mathrm{O}_{0,52}$ | $4.17\left(\mathrm{NH}_{3}\right)$ | 24.5 |
|  | $\mathrm{P}_{0.0054} \mathrm{~S}_{0.005}{ }^{2}$ | $4.65\left(\mathrm{~N}_{3}\right)$ |  |
| METHANE | $\mathrm{CH}_{4}$ | $5.45\left(\mathrm{HNO}_{3}\right)$ |  |
| n-ALKANE | $\mathrm{C}_{4} \mathrm{H}_{32}$ | 8 | 16.0 |
| METHANOL | $\mathrm{CH}_{4} \mathrm{O}$ | 6.13 | 14.1 |
| ETHANOL | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | 6.0 | 32.0 |
| GLYCEROL | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{3}$ | 6.0 | 23.0 |
| MANNITOL | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$ | 4.67 | 30.7 |
| ACETIC ACID | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ | 4.33 | 30.3 |
| LACTIC ACID | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ | 4.0 | 30.0 |
| GLUCOSE | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ | 4.0 | 30.0 |
| FORMALDEHYDE | $\mathrm{CH}_{2} \mathrm{O}$ | 4.0 | 30.0 |
| GLUCONIC ACID | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{7}$ | 4.0 | 30.0 |
| SUCCINIC ACID | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ | 3.67 | 32.7 |
| CITRIC ACID | $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ | 3.50 | 29.5 |
| MALIC ACID | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$ | 3.0 | 32.0 |
| FORMIC ACID | $\mathrm{CH}_{2} \mathrm{O}_{2}$ | 3.0 | 33.5 |
| OXALIC ACID | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ | 2.0 | 46.0 |

[^4]1983. Used with permission of Nature Publishing Group (www.nature.com).

Aerobic Biodegradation of Glucose with No Product, Ammonia Nitrogen Source, Cell Production Only, RQ = 1.1
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{aO}_{2}+\mathrm{bNH}_{3} \rightarrow \mathrm{cCH}_{1.8} \mathrm{O}_{0.5} \mathrm{~N}_{0.2}+\mathrm{dCO}_{2}+\mathrm{eH}_{2} \mathrm{O}$
Substrate
Cells

For the above conditions, one finds that:
$\mathrm{a}=1.94$
$\mathrm{b}=0.77$
c $=3.88$
$\mathrm{d}=2.13$
$\mathrm{e}=3.68$
The c coefficient represents a theoretical maximum yield coefficient, which may be reduced by a yield factor.

Anaerobic Biodegradation of Organic Wastes, Incomplete Stabilization
$\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{N}_{\mathrm{d}} \rightarrow \mathrm{nC}_{\mathrm{w}} \mathrm{H}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}+\mathrm{mCH}_{4}+\mathrm{sCO}_{2}+\mathrm{rH}_{2} \mathrm{O}+$ $(\mathrm{d}-\mathrm{nx}) \mathrm{NH}_{3}$
$\mathrm{s}=\mathrm{a}-\mathrm{nw}-\mathrm{m}$
$\mathrm{r}=\mathrm{c}-\mathrm{ny}-2 \mathrm{~s}$
Knowledge of product composition, yield coefficient and a methane $/ \mathrm{CO}_{2}$ ratio is needed.

Anaerobic Biodegradation of Organic Wastes, Complete Stabilization
$\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{N}_{\mathrm{d}}+\mathrm{rH}_{2} \mathrm{O} \rightarrow \mathrm{mCH}_{4}+\mathrm{sCO}_{2}+\mathrm{dNH}_{3}$
$\mathrm{r}=\frac{4 \mathrm{a}-\mathrm{b}-2 \mathrm{c}+3 \mathrm{~d}}{4} \quad \mathrm{~m}=\frac{4 \mathrm{a}+\mathrm{b}-2 \mathrm{c}-3 \mathrm{~d}}{8}$
$\mathrm{s}=\frac{4 \mathrm{a}-\mathrm{b}+2 \mathrm{c}+3 \mathrm{~d}}{8}$

## Transfer Across Membrane Barriers

## Mechanisms

Passive diffusion - affected by lipid solubility (high solubility increases transport), molecular size (decreased with molecular size), and ionization (decreased with ionization). Passive diffusion is influenced by:

1. Partition coefficient (indicates lipid solubility; high lipid solubility characterizes materials that easily penetrate skin and other membranes).
2. Molecular size is important in that small molecules tend to transport much easier than do large molecules.
3. Degree of ionization is important because, in most cases, only unionized forms of materials transport easily through membranes. Ionization is described by the following relationships:
Acids

$$
\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}=\log _{10}\left[\frac{\text { nonioinized form }}{\text { ionized form }}\right]=\log _{10} \frac{\mathrm{HA}}{\mathrm{~A}}
$$

Base

$$
\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}=\log _{10}\left[\frac{\text { ionized form }}{\text { nonionized form }}\right]=\log _{10} \frac{\mathrm{HB}^{+}}{\mathrm{B}}
$$

Facilitated diffusion - requires participation of a protein carrier molecule. This mode of transport is highly compound dependent.
Active diffusion - requires protein carrier and energy and is similarly affected by ionization and is highly compound dependent.
Other - includes the specialized mechanisms occurring in lungs, liver, and spleen.

Avogadro's Number: The number of elementary particles in a mol of a substance.

$$
\begin{aligned}
& 1 \mathrm{~mol}=1 \text { gram-mole } \\
& 1 \mathrm{~mol}=6.02 \times 10^{23} \text { particles }
\end{aligned}
$$

A mol is defined as an amount of a substance that contains as many particles as 12 grams of ${ }^{12} \mathrm{C}$ (carbon 12). The elementary particles may be atoms, molecules, ions, or electrons.

## ACIDS AND BASES (aqueous solutions)

$$
\mathrm{pH}=\log _{10}\left(\frac{1}{\left[\mathrm{H}^{+}\right]}\right), \text {where }
$$

$\left[\mathrm{H}^{+}\right]=$molar concentration of hydrogen ion,
Acids have $\mathrm{pH}<7$.
Bases have $\mathrm{pH}>7$.

## ELECTROCHEMISTRY

Cathode - The electrode at which reduction occurs.
Anode - The electrode at which oxidation occurs.
Oxidation - The loss of electrons.
Reduction - The gaining of electrons.
Oxidizing Agent - A species that causes others to become oxidized.
Reducing Agent - A species that causes others to be reduced.
Cation - Positive ion
Anion - Negative ion

## DEFINITIONS

Molarity of Solutions - The number of gram moles of a substance dissolved in a liter of solution.
Molality of Solutions - The number of gram moles of a substance per 1,000 grams of solvent.
Normality of Solutions - The product of the molarity of a solution and the number of valences taking place in a reaction.
Equivalent Mass - The number of parts by mass of an element or compound which will combine with or replace directly or indirectly 1.008 parts by mass of hydrogen, 8.000 parts of oxygen, or the equivalent mass of any other element or compound. For all elements, the atomic mass is the product of the equivalent mass and the valence.
Molar Volume of an Ideal Gas $\left[\right.$ at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ and 1 atm ( 14.7 psia )]; $22.4 \mathrm{~L} /\left(\mathrm{g}\right.$ mole) [ $359 \mathrm{ft}^{3} /(\mathrm{lb}$ mole) $)$.
Mole Fraction of a Substance - The ratio of the number of moles of a substance to the total moles present in a mixture of substances. Mixture may be a solid, a liquid solution, or a gas.

Equilibrium Constant of a Chemical Reaction

$$
\begin{aligned}
& a A+b B \rightleftarrows c C+d D \\
& K_{\text {eq }}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{aligned}
$$

Le Chatelier's Principle for Chemical Equilibrium - When a stress (such as a change in concentration, pressure, or temperature) is applied to a system in equilibrium, the equilibrium shifts in such a way that tends to relieve the stress.
Heats of Reaction, Solution, Formation, and Combustion Chemical processes generally involve the absorption or evolution of heat. In an endothermic process, heat is absorbed (enthalpy change is positive). In an exothermic process, heat is evolved (enthalpy change is negative).
Solubility Product of a slightly soluble substance $A B$ :

$$
A_{m} B_{n} \rightarrow m A^{n+}+n B^{m-}
$$

Solubility Product Constant $=K_{\mathrm{SP}}=\left[A^{+}\right]^{m}[B]^{n}$
Metalic Elements - In general, metallic elements are distinguished from non-metallic elements by their luster, malleability, conductivity, and usual ability to form positive ions.
Non-Metallic Elements - In general, non-metallic elements are not malleable, have low electrical conductivity, and rarely form positive ions.
Faraday's Law - In the process of electrolytic changes, equal quantities of electricity charge or discharge equivalent quantities of ions at each electrode. One gram equivalent weight of matter is chemically altered at each electrode for 96,485 coulombs, or one Faraday, of electricity passed through the electrolyte.
A catalyst is a substance that alters the rate of a chemical reaction and may be recovered unaltered in nature and amount at the end of the reaction. The catalyst does not affect the position of equilibrium of a reversible reaction.
The atomic number is the number of protons in the atomic nucleus. The atomic number is the essential feature which distinguishes one element from another and determines the position of the element in the periodic table.
Boiling Point Elevation - The presence of a non-volatile solute in a solvent raises the boiling point of the resulting solution compared to the pure solvent; i.e., to achieve a given vapor pressure, the temperature of the solution must be higher than that of the pure substance.
Freezing Point Depression - The presence of a solute lowers the freezing point of the resulting solution compared to that of the pure solvent.

PERIODIC TABLE OF ELEMENTS

| $\begin{gathered} \hline 1 \\ \mathbf{H} \\ 1.0079 \end{gathered}$ |  |  |  |  | Atomic Number <br> Symbol <br> Atomic Weight |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \hline 2 \\ \mathrm{He} \\ 4.0026 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 3 \\ \mathbf{L i} \\ 6.941 \end{gathered}$ | $\begin{gathered} \hline 4 \\ \text { Be } \\ 9.0122 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \hline 5 \\ \mathbf{B} \\ 10.811 \end{gathered}$ | $\begin{gathered} \hline 6 \\ \text { C } \\ 12.011 \end{gathered}$ | $\begin{gathered} \hline 7 \\ \mathbf{N} \\ 14.007 \end{gathered}$ | $\begin{gathered} \hline 8 \\ \mathbf{O} \\ 15.999 \end{gathered}$ | $\begin{gathered} \hline 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$ | $\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.179 \end{gathered}$ |
| $\begin{gathered} \hline 11 \\ \mathbf{N a} \\ 22.990 \end{gathered}$ | $\begin{gathered} 12 \\ \mathbf{M g} \\ 24.305 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 13 \\ \mathbf{A l} \\ 26.981 \end{gathered}$ | $\begin{gathered} 14 \\ \mathbf{S i} \\ 28.086 \end{gathered}$ | $\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$ | $\begin{gathered} \hline 16 \\ \mathbf{S} \\ 32.066 \end{gathered}$ | $\begin{gathered} 17 \\ \text { Cl } \\ 35.453 \end{gathered}$ | $\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$ |
| $\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$ | $\begin{gathered} 20 \\ \mathbf{C a} \\ 40.078 \end{gathered}$ | $\begin{gathered} 21 \\ \text { Sc } \\ 44.956 \end{gathered}$ | $\begin{gathered} 22 \\ \mathbf{T i} \\ 47.88 \end{gathered}$ | $\begin{gathered} 23 \\ \mathbf{V} \\ 50.941 \end{gathered}$ | $\begin{gathered} 24 \\ \mathbf{C r} \\ 51.996 \end{gathered}$ | $\begin{gathered} 25 \\ \text { Mn } \\ 54.938 \end{gathered}$ | $\begin{gathered} 26 \\ \text { Fe } \\ 55.847 \end{gathered}$ | $\begin{gathered} 27 \\ \text { Co } \\ 58.933 \end{gathered}$ | $\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$ | $\begin{gathered} 29 \\ \mathbf{C u} \\ 63.546 \end{gathered}$ | $\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$ | $\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$ | $\begin{gathered} 32 \\ \mathbf{G e} \\ 72.61 \end{gathered}$ | $\begin{gathered} 33 \\ \text { As } \\ 74.921 \end{gathered}$ | $\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$ | $\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$ | $\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$ |
| $\begin{gathered} 37 \\ \mathbf{R b} \\ 85.468 \end{gathered}$ | $\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$ | $\begin{gathered} 39 \\ \mathbf{Y} \\ 88.906 \end{gathered}$ | $\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \\ 4 \end{gathered}$ | $\begin{gathered} 41 \\ \mathbf{N b} \\ 92.906 \end{gathered}$ | $\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$ | $\begin{gathered} \hline 43 \\ \text { Tc } \\ (98) \end{gathered}$ | $\begin{gathered} \hline 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$ | $\begin{gathered} \hline 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$ | $\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \\ 2 \end{gathered}$ | $\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$ | $\begin{gathered} 48 \\ \text { Cd } \\ 112.4 \\ 1 \end{gathered}$ | $\begin{gathered} \hline 49 \\ \text { In } \\ 114.82 \end{gathered}$ | $\begin{gathered} 50 \\ \text { Sn } \\ 118.71 \end{gathered}$ | $\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$ | $\begin{gathered} \hline 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$ | $\begin{gathered} \hline 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$ | $\begin{gathered} 54 \\ \mathbf{X e} \\ 131.29 \end{gathered}$ |
| $\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$ | $\begin{gathered} 56 \\ \mathbf{B a} \\ 137.33 \end{gathered}$ | $\begin{gathered} 57^{*} \\ \mathbf{L a} \\ 138.91 \end{gathered}$ | $\begin{gathered} 72 \\ \mathbf{H f} \\ 178.4 \\ 9 \end{gathered}$ | $\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$ | $\begin{gathered} \hline 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$ | $\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$ | $\begin{gathered} \hline 76 \\ \text { Os } \\ 190.2 \end{gathered}$ | $\begin{gathered} 77 \\ \text { Ir } \\ 192.22 \end{gathered}$ | $\begin{gathered} \hline 78 \\ \mathbf{P t} \\ 195.0 \\ 8 \end{gathered}$ | $\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$ | $\begin{gathered} 80 \\ \mathbf{H g} \\ 200.5 \\ 9 \end{gathered}$ | $\begin{gathered} 81 \\ \mathbf{T l} \\ 204.38 \end{gathered}$ | $\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$ | $\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$ | $\begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}$ | $\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$ | $\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$ |
| $\begin{gathered} 87 \\ \text { Fr } \\ (223) \end{gathered}$ | $\begin{gathered} 88 \\ \mathbf{R a} \\ 226.02 \end{gathered}$ | $\begin{gathered} 89 * * \\ \mathbf{A c} \\ 227.03 \end{gathered}$ | $\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$ | $\begin{gathered} 105 \\ \mathbf{H a} \\ (262) \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| *Lantha | de Series |  | $\begin{gathered} 58 \\ \mathbf{C e} \\ 140.1 \\ 2 \end{gathered}$ | $\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$ | $\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$ | $\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$ | $\begin{gathered} \hline 62 \\ \text { Sm } \\ 150.36 \end{gathered}$ | $\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$ | $\begin{gathered} 64 \\ \text { Gd } \\ 157.2 \\ 5 \end{gathered}$ | $\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$ | $\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ 0 \end{gathered}$ | $\begin{gathered} 67 \\ \text { Но } \\ 164.93 \end{gathered}$ | $\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$ | $\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$ | $\begin{gathered} \hline 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$ | $\begin{gathered} \hline 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$ |  |
| **Actin | Series |  | $\begin{gathered} 90 \\ \text { Th } \\ 232.0 \\ 4 \end{gathered}$ | $\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$ | $\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$ | $\begin{gathered} 93 \\ \mathbf{N p} \\ 237.05 \end{gathered}$ | $\begin{gathered} 94 \\ \mathbf{P u} \\ (244) \end{gathered}$ | $\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$ | 96 <br> Cm <br> (247) | $\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$ | $\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$ | $\begin{gathered} 99 \\ \text { Es } \\ (252) \end{gathered}$ | $\begin{gathered} 100 \\ \mathbf{F m} \\ (257) \end{gathered}$ | $\begin{gathered} 101 \\ \mathbf{M d} \\ (258) \end{gathered}$ | $\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$ | $\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$ |  |

IMPORTANT FAMILIES OF ORGANIC COMPOUNDS


| Standard Oxidation Potentials for Corrosion Reactions* |  |
| :---: | :---: |
| Corrosion Reaction | Potential, $\boldsymbol{E}_{\mathbf{0}}$, Volts <br> vs. Normal Hydrogen Electrode |
| $\begin{gathered} \mathrm{Au} \rightarrow \mathrm{Au}^{3+}+3 \mathrm{e} \\ 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} \\ \mathrm{Pt} \rightarrow \mathrm{Pt}^{2+}+2 \mathrm{e} \\ \mathrm{Pd} \rightarrow \mathrm{Pd}^{2+}+2 \mathrm{e} \\ \mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e} \end{gathered}$ | $\begin{aligned} & -1.498 \\ & -1.229 \\ & -1.200 \\ & -0.987 \\ & -0.799 \end{aligned}$ |
| $\begin{gathered} 2 \mathrm{Hg} \rightarrow \mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{e} \\ \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e} \\ 4(\mathrm{OH})^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e} \\ \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e} \\ \mathrm{Sn}^{2+} \rightarrow \mathrm{n}^{4+}+2 \mathrm{e} \end{gathered}$ | -0.788 -0.771 -0.401 -0.337 -0.150 |
| $\begin{aligned} & \mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e} \\ & \mathrm{~Pb} \rightarrow \mathrm{~Pb}^{2+}+2 \mathrm{e} \\ & \mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}+2 \mathrm{e} \\ & \mathrm{Ni} \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{e} \\ & \mathrm{Co} \rightarrow \mathrm{Co}^{2+}+2 \mathrm{e} \end{aligned}$ | $\begin{array}{r} 0.000 \\ +0.126 \\ +0.136 \\ +0.250 \\ +0.277 \end{array}$ |
| $\begin{aligned} \mathrm{Cd} & \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{e} \\ \mathrm{Fe} & \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e} \\ \mathrm{Cr} & \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{e} \\ \mathrm{Zn} & \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e} \\ \mathrm{Al} & \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e} \end{aligned}$ | $\begin{aligned} & +0.403 \\ & +0.440 \\ & +0.744 \\ & +0.763 \\ & +1.662 \end{aligned}$ |
| $\begin{aligned} \mathrm{Mg} & \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e} \\ \mathrm{Na} & \rightarrow \mathrm{Na}^{+}+\mathrm{e} \\ \mathrm{~K} & \rightarrow \mathrm{~K}^{+}+\mathrm{e} \end{aligned}$ | $\begin{aligned} & +2.363 \\ & +2.714 \\ & +2.925 \end{aligned}$ |

* Measured at $25^{\circ} \mathrm{C}$. Reactions are written as anode half-cells. Arrows are reversed for cathode half-cells.

Flinn, Richard A. and Paul K. Trojan, Engineering Materials and Their Applications, 4th ed., Houghton Mifflin Company, 1990.
NOTE: In some chemistry texts, the reactions and the signs of the values (in this table) are reversed; for example, the half-cell potential of zinc is given as -0.763 volt for the reaction $\mathrm{Zn}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Zn}$. When the potential $E_{\mathrm{o}}$ is positive, the reaction proceeds spontaneously as written.

## MATERIALS SCIENCE/STRUCTURE OF MATTER

## CRYSTALLOGRAPHY

## Common Metallic Crystal Structures

Body-centered cubic, face-centered cubic, and hexagonal close-packed.
Body-
Centered
Cubic
(BCC)

Face-
Centered
Cubic
(FCC)


Hexagonal
Close-Packed (HCP)


## Number of Atoms in a Cell

BCC: 2
FCC: 4
HCP: 6

## Packing Factor

The packing factor is the volume of the atoms in a cell (assuming touching, hard spheres) divided by the total cell volume.
BCC: 0.68
FCC: 0.74
HCP: 0.74

## Coordination Number

The coordination number is the number of closest neighboring (touching) atoms in a given lattice.

ATOMIC BONDING
Primary Bonds
Ionic (e.g., salts, metal oxides)
Covalent (e.g., within polymer molecules)
Metallic (e.g., metals)

## CORROSION

A table listing the standard electromotive potentials of metals is shown on page 81 .
For corrosion to occur, there must be an anode and a cathode in electrical contact in the presence of an electrolyte.

## Anode Reaction (oxidation) of a Typical Metal, M <br> $\mathrm{M}^{\mathrm{o}} \rightarrow \mathrm{M}^{n+}+n \mathrm{e}^{-}$

## Possible Cathode Reactions (reduction)

$$
\begin{aligned}
& 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-} \\
& 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 3 \mathrm{H}_{2} \mathrm{O} \\
& \quad 2 \mathrm{e}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}
\end{aligned}
$$

When dissimilar metals are in contact, the more electropositive one becomes the anode in a corrosion cell. Different regions of carbon steel can also result in a corrosion reaction: e.g., cold-worked regions are anodic to non-coldworked; different oxygen concentrations can cause oxygendeficient region to become cathodic to oxygen-rich regions; grain boundary regions are anodic to bulk grain; in multiphase alloys, various phases may not have the same galvanic potential.

## DIFFUSION

## Diffusion coefficient

$D=D_{\mathrm{o}} \mathrm{e}^{-Q /(R T)}$, where
$D=$ the diffusion coefficient,
$D_{\mathrm{o}}=$ the proportionality constant,
$Q=$ the activation energy,
$R=$ the gas constant [ $1.987 \mathrm{cal} /(\mathrm{g} \mathrm{mol} \cdot \mathrm{K})]$, and
$T=$ the absolute temperature.

## THERMAL AND MECHANICAL PROCESSING

Cold working (plastically deforming) a metal increases strength and lowers ductility.
Raising temperature causes (1) recovery (stress relief), (2) recrystallization, and (3) grain growth. Hot working allows these processes to occur simultaneously with deformation.
Quenching is rapid cooling from elevated temperature, preventing the formation of equilibrium phases.
In steels, quenching austenite [FCC ( $\gamma$ ) iron] can result in martensite instead of equilibrium phases-ferrite $[B C C(\alpha)$ iron] and cementite (iron carbide).

## TESTING METHODS

## Standard Tensile Test

Using the standard tensile test, one can determine elastic modulus, yield strength, ultimate tensile strength, and ductility (\% elongation). (See Mechanics of Materials section.)

## Endurance Test

Endurance tests (fatigue tests to find endurance limit) apply a cyclical loading of constant maximum amplitude. The plot (usually semi-log or $\log -\log$ ) of the maximum stress $(\sigma)$ and the number $(N)$ of cycles to failure is known as an $S-N$ plot. The figure below is typical of steel, but may not be true for other metals; i.e., aluminum alloys, etc.


The endurance stress (endurance limit or fatigue limit) is the maximum stress which can be repeated indefinitely without causing failure. The fatigue life is the number of cycles required to cause failure for a given stress level.

## Impact Test

The Charpy Impact Test is used to find energy required to fracture and to identify ductile to brittle transition.


Impact tests determine the amount of energy required to cause failure in standardized test samples. The tests are repeated over a range of temperatures to determine the ductile to brittle transition temperature.

## Creep

Creep occurs under load at elevated temperatures. The general equation describing creep is:

$$
\frac{d \varepsilon}{d t}=A \sigma^{n} \mathrm{e}^{-Q /(R T)}
$$

where:

$$
\begin{aligned}
\varepsilon & =\text { strain, } \\
t & =\text { time, } \\
A & =\text { pre-exponential constant, } \\
\sigma & =\text { applied stress, } \\
n & =\text { stress sensitivity, }
\end{aligned}
$$

For polymers below, the glass transition temperature, $T_{g}, n$ is typically between 2 and 4 , and $Q$ is $\geq 100 \mathrm{~kJ} / \mathrm{mol}$. Above $T_{g}, n$ is typically between 6 and 10 and $Q$ is $\sim 30 \mathrm{~kJ} / \mathrm{mol}$.
For metals and ceramics, $n$ is typically between 3 and 10 , and $Q$ is between 80 and $200 \mathrm{~kJ} / \mathrm{mol}$.

## STRESS CONCENTRATION IN BRITTLE MATERIALS

When a crack is present in a material loaded in tension, the stress is intensified in the vicinity of the crack tip. This phenomenon can cause significant loss in overall ability of a member to support a tensile load.

$$
K_{I}=y \sigma \sqrt{\pi a}
$$

$K_{I}=$ the stress intensity in tension, MPa m ${ }^{(1 / 2)}$,
$y=$ is a geometric parameter,

$$
\begin{aligned}
& y=1 \text { for interior crack } \\
& y=1.1 \text { for exterior crack }
\end{aligned}
$$

$\sigma=$ is the nominal applied stress, and
$a=$ is crack length as shown in the two diagrams below.


The critical value of stress intensity at which catastrophic crack propagation occurs, $\mathrm{K}_{\mathrm{Ic}}$, is a material property.

Representative Values of Fracture Toughness

| Material | $\mathrm{K}_{\mathrm{Ic}}\left(\mathrm{MPa} \cdot \mathrm{m}^{\mathrm{I} 2}\right)$ | $\mathrm{K}_{\mathrm{Ic}}\left(\mathrm{ksi} \cdot \mathrm{n}^{\mathrm{I} 2}\right)$ |
| :--- | :---: | :---: |
| A1 2014-T651 | 24.2 | 22 |
| A1 2024-T3 | 44 | 40 |
| 52100 Steel | 14.3 | 13 |
| 4340 Steel | 46 | 42 |
| Alumina | 4.5 | 4.1 |
| Silicon Carbide | 3.5 | 3.2 |

## HARDENABILITY

Hardenability is the "ease" with which hardness may be attained. Hardness is a measure of resistance to plastic deformation.

(\#2) and (\#8) indicate grain size
JOMINY HARDENABILITY CURVES FOR SIX STEELS


Distance from quenched end, $\mathrm{D}_{\mathrm{qe}}$
COOLING RATES FOR BARS QUENCHED IN AGITATED WATER


COOLING RATES FOR BARS QUENCHED IN AGITATED OIL

## RELATIONSHIP BETWEEN HARDNESS AND TENSILE STRENGTH

For steels, there is a general relationship between Brinell hardness and tensile strength as follows:
$\mathrm{TS}(\mathrm{psi}) \simeq 500 \mathrm{BHN}$
$\mathrm{TS}(\mathrm{MPa}) \simeq 3.5 \mathrm{BHN}$

## ASTM GRAIN SIZE

$$
\begin{aligned}
& S_{V}=2 P_{L} \\
& N_{\left(0.0645 \mathrm{~mm}^{2}\right)}=2^{(n-1)} \\
& \frac{N_{\text {actual }}}{\text { Actual Area }}=\frac{N}{\left(0.0645 \mathrm{~mm}^{2}\right)}, \text { where }
\end{aligned}
$$

$S_{V}=$ grain-boundary surface per unit volume,
$P_{L}=$ number of points of intersection per unit length between the line and the boundaries,
$N=$ number of grains observed in a area of $0.0645 \mathrm{~mm}^{2}$, and
$n=$ grain size (nearest integer $>1$ ).

- Van Vlack, L., Elements of Materials Science \& Engineering, Addison-Wesley Pub. Co., Inc., 1989.


## COMPOSITE MATERIALS

$\rho_{c}=\Sigma f_{i} \rho_{i}$
$C_{c}=\Sigma f_{i} c_{i}$
$\left[\sum \frac{f_{i}}{E_{i}}\right]^{-1} \leq E_{c} \leq \sum f_{i} E_{i}$
$\rho_{c}=$ density of composite,
$C_{c}=$ heat capacity of composite per unit volume,
$E_{c}=$ Young's modulus of composite,
$f_{i}=$ volume fraction of individual material,
$c_{i}=$ heat capacity of individual material per unit volume, and
$E_{i}=$ Young's modulus of individual material.
Also, for axially oriented long fiber reinforced composites, the strains of the two components are equal.

$$
(\Delta L / L)_{1}=(\Delta L / L)_{2}
$$

$\Delta L=$ change in length of the composite,
$L=$ original length of the composite.

## HALF-LIFE

$$
N=N_{o} e^{-0.6933 t \tau}, \text { where }
$$

$N_{o}=$ original number of atoms,
$N=$ final number of atoms,
$t=$ time, and
$\tau=$ half-life.

| Material | Density <br> $\boldsymbol{\rho}$ <br> $\mathbf{M g} / \mathbf{m}^{\mathbf{3}}$ | Young's Modulus <br> $\boldsymbol{E}$ <br> $\mathbf{G P a}$ | $\boldsymbol{E} / \mathbf{\rho}$ <br> $\mathbf{N} \cdot \mathbf{m} / \mathbf{g}$ |
| :--- | :---: | :---: | :---: |
| Aluminum | 2.7 | 70 | 26,000 |
| Steel | 7.8 | 205 | 26,000 |
| Magnesium | 1.7 | 45 | 26,000 |
| Glass | 2.5 | 70 | 28,000 |
| Polystyrene | 1.05 | 2 | 2,700 |
| Polyvinyl Chloride | 1.3 | $<4$ | $<3,500$ |
| Alumina fiber | 3.9 | 400 | 100,000 |
| Aramide fiber | 1.3 | 125 | 100,000 |
| Boron fiber | 2.3 | 400 | 170,000 |
| Beryllium fiber | 1.9 | 300 | 160,000 |
| BeO fiber | 3.0 | 400 | 130,000 |
| Carbon fiber | 2.3 | 700 | 300,000 |
| Silicon Carbide fiber | 3.2 | 400 | 120,000 |

## CONCRETE

## Portland Cement Concrete

Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, air, and water. It is a temporarily plastic material, which can be cast or molded, but is later converted to a solid mass by chemical reaction.
Water-cement $W / C$ ratio is the primary factor affecting the strength of concrete. The figure below shows how W/C, expressed as a ratio by weight, affects the compressive strength for both air-entrained and non-air-entrained concrete. Strength decreases with an increase in W/C in both cases.


Concrete strength decreases with increase in watercement ratio for concrete with and without entrained air.
(From Concrete Manual, 8th ed., U.S. Bureau of Reclamation, 1975.)
Water Content affects workability. However, an increase in water without a corresponding increase in cement reduces the concrete strength. Air entrainment is the preferred method of increasing workability.


Concrete compressive strength varies with moist-curing conditions. Mixes tested had a water-cement ratio of 0.50 , a slump of 3.5 in., cement content of $556 \mathrm{lb} / \mathrm{yd}^{3}$, sand content of $36 \%$, and air content of $4 \%$.

- Merritt, Frederick S., Standard Handbook for Civil Engineers, 3rd ed., McGraw-Hill, 1983.


## POLYMERS

## Classification of Polymers

Polymers are materials consisting of high molecular weight carbon-based chains, often thousands of atoms long. Two broad classifications of polymers are thermoplastics or thermosets. Thermoplastic materials can be heated to high temperature and then reformed. Thermosets, such as vulcanized rubber or epoxy resins, are cured by chemical or thermal processes which cross link the polymer chains, preventing any further re-formation.

## Amorphous Materials and Glasses

Silica and some carbon-based polymers can form either crystalline or amorphous solids, depending on their composition, structure, and processing conditions. These two forms exhibit different physical properties. Volume expansion with increasing temperature is shown schematically in the following graph, in which $\mathrm{T}_{\mathrm{m}}$ is the melting temperature, and $\mathrm{T}_{\mathrm{g}}$ is the glass transition temperature. Below the glass transition temperature, amorphous materials behave like brittle solids. For most common polymers, the glass transition occurs between $-40^{\circ} \mathrm{C}$ and $250^{\circ} \mathrm{C}$.


## Thermo-Mechanical Properties of Polymers

The curve for the elastic modulus, E , or strength of polymers, $\sigma$, behaves according to the following pattern:


## Polymer Additives

Chemicals and compounds are added to polymers to improve properties for commercial use. These substances, such as plasticizers, improve formability during processing, while others increase strength or durability.

Examples of common additives are:
Plasticizers: vegetable oils, low molecular weight polymers or monomers
Fillers: talc, chopped glass fibers
Flame retardants: halogenated paraffins, zinc borate, chlorinated phosphates
Ultraviolet or visible light resistance: carbon black
Oxidation resistance: phenols, aldehydes

## MEASUREMENT AND CONTROLS

## MEASUREMENT

## Definitions:

Transducer - a device used to convert a physical parameter such as temperature, pressure, flow, light intensity, etc. into an electrical signal (also called a sensor).

Transducer sensitivity - the ratio of change in electrical signal magnitude to the change in magnitude of the physical parameter being measured.

Resistance Temperature Detector (RTD) - a device used to relate change in resistance to change in temperature. Typically made from platinum, the controlling equation for an RTD is given by:

$$
R_{T}=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \text {, where }
$$

$R_{\mathrm{T}}$ is the resistance of the RTD at temperature $T$ (measured in ${ }^{\circ} \mathrm{C}$ )
$R_{0}$ is the resistance of the RTD at the reference temperature $T_{0}$ (usually $0^{\circ} \mathrm{C}$ )
$\alpha$ is the temperature coefficient of the RTD
Strain Gauge - a device whose electrical resistance varies in proportion to the amount of strain in the device.

Gauge factor (GF) - the ratio of fractional change in electrical resistance to the fractional change in length (strain):
$G F=\frac{\Delta R / R}{\Delta L / L}=\frac{\Delta R / R}{\varepsilon}$, where
$R$ is the nominal resistance of the strain gauge at nominal length $L$
$\Delta \mathrm{R}$ is the change in resistance due the change in length $\Delta L$ $\varepsilon$ is the normal strain sensed by the gauge.

The Gauge Factor for metallic strain gauges is typically around 2.

Wheatstone Bridge - an electrical circuit used to measure changes in resistance.


Wheatstone Bridge

If $R_{1} R_{4}=R_{2} R_{3}$ then $V_{O}=0 \mathrm{~V}$ and the bridge is said to be balanced. If $R_{1}=R_{2}=R_{3}=R$ and $R_{4}=R+\Delta R$ where $\Delta R \ll R$, then $V_{O} \approx \frac{\Delta R}{4 R} \cdot V_{I N}$.

## SAMPLING

When a continuous-time or analog signal is sampled using a discrete-time method, certain basic concepts should be considered. The sampling rate or frequency is given by

$$
f_{s}=\frac{1}{\Delta t}
$$

Shannon's sampling theorem states that in order to accurately reconstruct the analog signal from the discrete sample points, the sample rate must be larger than twice the highest frequency contained in the measured signal. Denoting this frequency, which is called the Nyquist frequency, as $f_{N}$, the sampling theorem requires that

$$
f_{s}>2 f_{N}
$$

When the above condition is not met, the higher frequencies in the measured signal will not be accurately represented and will appear as lower frequencies in the sampled data. These are known as alias frequencies.

## Analog-to-Digital Conversion

When converting an analog signal to digital form, the resolution of the conversion is an important factor. For a measured analog signal over the nominal range [ $V_{L}, V_{H}$ ], where $V_{L}$ is the low end of the voltage range and $V_{H}$ is the nominal high end of the voltage range, the voltage resolution is given by

$$
\varepsilon_{V}=\frac{V_{H}-V_{L}}{2^{n}}
$$

where $n$ is the number of conversion bits of the A/D converter with typical values of $4,8,10,12$, or 16 . This number is a key design parameter. After converting an analog signal the $\mathrm{A} / \mathrm{D}$ converter produces an integer number of $n$ bits. Call this number $N$. Note that the range of $N$ is $\left[0,2^{n}-1\right]$. When calculating the discrete voltage, $V$, using the reading, $N$, from the $\mathrm{A} / \mathrm{D}$ converter the following equation is used.

$$
V=\varepsilon_{V} N+V_{L}
$$

Note that with this strategy, the highest measurable voltage is one voltage resolution less than $V_{H}$, or $V_{H}-\varepsilon_{V}$.

## Signal Conditioning

Signal conditioning of the measured analog signal is often required to prevent alias frequencies and to reduce measurement errors. For information on these signal conditioning circuits, also known as filters, see the ELECTRICAL AND COMPUTER ENGINEERING section.

## MEASUREMENT UNCERTAINTY

Suppose that a calculated result $R$ depends on measurements whose values are $x_{1} \pm w_{1}, x_{2} \pm w_{2}, x_{3} \pm w_{3}$, etc., where $R=$ $f\left(x_{1}, x_{2}, x_{3}, \ldots x_{\mathrm{n}}\right), x_{\mathrm{i}}$ is the measured value, and $w_{\mathrm{i}}$ is the uncertainty in that value. The uncertainty in $R$, $w_{R}$, can be estimated using the Kline-McClintock equation:

$$
w_{R}=\sqrt{\left(w_{1} \frac{\partial f}{\partial x_{1}}\right)^{2}+\left(w_{2} \frac{\partial f}{\partial x_{2}}\right)^{2}+\ldots+\left(w_{n} \frac{\partial f}{\partial x_{n}}\right)^{2}}
$$

## CONTROL SYSTEMS

The linear time-invariant transfer function model represented by the block diagram

can be expressed as the ratio of two polynomials in the form

$$
\frac{Y(s)}{X(s)}=G(s)=\frac{N(s)}{D(s)}=K \frac{\prod_{m=1}^{M}\left(s-z_{m}\right)}{\prod_{n=1}^{N}\left(s-p_{n}\right)}
$$

where the $M$ zeros, $z_{m}$, and the $N$ poles, $p_{n}$, are the roots of the numerator polynomial, $N(s)$, and the denominator polynomial, $D(s)$, respectively.
One classical negative feedback control system model block diagram is

where $G_{1}(s)$ is a controller or compensator, $G_{2}(s)$ represents a plant model, and $H(s)$ represents the measurement dynamics. $Y(s)$ represents the controlled variable, $R(s)$ represents the reference input, and $L(s)$ represents a load disturbance. $Y(s)$ is related to $R(s)$ and $L(s)$ by

$$
\begin{aligned}
Y(s)= & \frac{G_{1}(s) G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)} R(s) \\
& +\frac{G_{2}(s)}{1+G_{1}(s) G_{2}(s) H(s)} L(s)
\end{aligned}
$$

$G_{1}(s) G_{2}(s) H(s)$ is the open-loop transfer function. The closed-loop characteristic equation is

$$
1+G_{1}(s) G_{2}(s) H(s)=0
$$

System performance studies normally include:

1. Steady-state analysis using constant inputs is based on the Final Value Theorem. If all poles of a $G(s)$ function have negative real parts, then

$$
\text { Steady State Gain }=\lim _{s \rightarrow 0} G(s)
$$

Note that $G(s)$ could refer to either an open-loop or a closedloop transfer function.
For the unity feedback control system model

with the open-loop transfer function defined by

$$
G(s)=\frac{K_{B}}{s^{T}} \times \frac{\prod_{m=1}^{M}\left(1+s / \omega_{m}\right)}{\prod_{n=1}^{N}\left(1+s / \omega_{n}\right)}
$$

The following steady-state error analysis table can be constructed where $T$ denotes the type of system; i.e., type 0 , type 1, etc.

| Steady-State Error $\boldsymbol{e}_{\text {ss }}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| Input Type | $T=0$ | $T=1$ | $T=2$ |
| Unit Step | $1 /\left(K_{B}+1\right)$ | 0 | 0 |
| Ramp | $\infty$ | $1 / K_{B}$ | 0 |
| Acceleration | $\infty$ | $\infty$ | $1 / K_{B}$ |

2. Frequency response evaluations to determine dynamic performance and stability. For example, relative stability can be quantified in terms of
a. Gain margin (GM) which is the additional gain required to produce instability in the unity gain feedback control system. If at $\omega=\omega_{180}$,
$\angle G\left(\mathrm{j} \omega_{180}\right)=-180^{\circ}$; then

$$
\mathrm{GM}=-20 \log _{10}\left(\left|G\left(\mathrm{j} \omega_{180}\right)\right|\right)
$$

b. Phase margin (PM) which is the additional phase required to produce instability. Thus,

$$
\mathrm{PM}=180^{\circ}+\angle G\left(\mathrm{j} \omega_{0 \mathrm{~dB}}\right)
$$

where $\omega_{0 \mathrm{~dB}}$ is the $\omega$ that satisfies $|G(\mathrm{j} \omega)|=1$.
3. Transient responses are obtained by using Laplace Transforms or computer solutions with numerical integration.
Common Compensator/Controller forms are
PID Controller $G_{C}(s)=K\left(1+\frac{1}{T_{I} s}+T_{D} s\right)$
Lag or Lead Compensator $G_{C}(s)=K\left(\frac{1+s T_{1}}{1+s T_{2}}\right)$
depending on the ratio of $T_{1} / T_{2}$.

## Routh Test

For the characteristic equation

$$
a_{\mathrm{n}} s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{0}=0
$$

the coefficients are arranged into the first two rows of an array. Additional rows are computed. The array and coefficient computations are defined by:

| $a_{\mathrm{n}}$ | $a_{n-2}$ | $a_{n-4}$ | $\ldots$ | $\ldots$ | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{n-1}$ | $a_{n-3}$ | $a_{n-5}$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $b_{1}$ | $b_{2}$ | $b_{3}$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $c_{1}$ | $c_{2}$ | $c_{3}$ | $\ldots$ | $\ldots$ | $\ldots$ |

where

$$
\begin{array}{ll}
b_{1}=\frac{a_{n-1} a_{n-2}-a_{n} a_{n-3}}{a_{n-1}} & c_{1}=\frac{a_{n-3} b_{1}-a_{n-1} b_{2}}{b_{1}} \\
b_{2}=\frac{a_{n-1} a_{n-4}-a_{n} a_{n-5}}{a_{n-1}} & c_{2}=\frac{a_{n-5} b_{1}-a_{n-1} b_{3}}{b_{1}}
\end{array}
$$

The necessary and sufficient conditions for all the roots of the equation to have negative real parts is that all the elements in the first column be of the same sign and nonzero.

## First-Order Control System Models

The transfer function model for a first-order system is

$$
\frac{Y(s)}{R(s)}=\frac{K}{\tau s+1}, \text { where }
$$

$K=$ steady state gain,
$\tau=$ time constant
The step response of a first-order system to a step input of magnitude $M$ is

$$
y(t)=y_{0} e^{-t / \tau}+K M\left(1-\mathrm{e}^{-t / \tau}\right)
$$

In the chemical process industry, $y_{0}$ is typically taken to be zero and $y(t)$ is referred to as a deviation variable.

For systems with time delay (dead time or transport lag) $\theta$ the transfer function is

$$
\frac{Y(s)}{R(s)}=\frac{K \mathrm{e}^{-\theta s}}{\tau s+1}
$$

The step response for $\mathrm{t} \geq \theta$ to a step of magnitude $M$ is
$y(t)=\left[y_{0} e^{-(t-\theta) / \tau}+K M\left(1-\mathrm{e}^{-(t-\theta) / \tau}\right)\right] u(t-\theta)$, where
$u(t)$ is the unit step function.

## Second-Order Control-System Models

One standard second-order control-system model is

$$
\frac{Y(s)}{R(s)}=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}, \text { where }
$$

$K=$ steady state gain,
$\zeta=$ the damping ratio,
$\omega_{n}=$ the undamped natural $(\zeta=0)$ frequency,
$\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$, the damped natural frequency,
and
$\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}$, the damped resonant frequency.
If the damping ratio $\zeta$ is less than unity, the system is said to be underdamped; if $\zeta$ is equal to unity, it is said to be critically damped; and if $\zeta$ is greater than unity, the system is said to be overdamped.
For a unit step input to a normalized underdamped secondorder control system, the time required to reach a peak value $t_{p}$ and the value of that peak $M_{p}$ are given by

$$
\begin{aligned}
& t_{p}=\pi /\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) \\
& M_{p}=1+e^{-\pi \zeta / \sqrt{1-\zeta^{2}}}
\end{aligned}
$$

For an underdamped second-order system, the logarithmic decrement is

$$
\delta=\frac{1}{m} \ln \left(\frac{x_{k}}{x_{k+m}}\right)=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}
$$

where $x_{k}$ and $x_{k+m}$ are the amplitudes of oscillation at cycles $k$ and $k+m$, respectively. The period of oscillation $\tau$ is related to $\omega_{d}$ by

$$
\omega_{d} \tau=2 \pi
$$

The time required for the output of a second-order system to settle to within $2 \%$ of its final value is defined to be

$$
T_{s}=\frac{4}{\zeta \omega_{n}}
$$

An alternative form commonly employed in the chemical process industry is

$$
\frac{Y(s)}{R(s)}=\frac{K}{\tau^{2} s^{2}+2 \zeta \tau s+1}, \text { where }
$$

$K=$ steady state gain,
$\zeta=$ the damping ratio,
$\tau=$ the inverse natural frequency.

## Root Locus

The root locus is the locus of points in the complex $s$-plane satisfying

$$
1+K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}=0 \quad m \leq n
$$

as $K$ is varied. The $p_{i}$ and $z_{j}$ are the open-loop poles and zeros, respectively. When $K$ is increased from zero the locus has the following properties.

1. Locus branches exist on the real axis to the left of an odd number of open-loop poles and/or zeros
2. The locus originates at the open-loop poles $p_{1}, \ldots, p_{n}$ and terminates at the zeros $z_{1}, \ldots, z_{m}$. If $m<n$ then $(n-m)$ branches terminate at infinity at asymptote angles

$$
\alpha=\frac{(2 k+1) 180^{\circ}}{n-m} \quad k=0, \pm 1, \pm 2, \pm 3, \cdots
$$

with the real axis.
3. The intersection of the real axis with the asymptotes is called the asymptote centroid and is given by
$\sigma_{A}=\frac{\sum_{i=1}^{n} \operatorname{Re}\left(p_{i}\right)-\sum_{i=1}^{m} \operatorname{Re}\left(z_{i}\right)}{n-m}$
4. If the locus crosses the imaginary $(\omega)$ axis the values of $K$ and $\omega$ are given by letting $s=\mathrm{j} \omega$ in the defining equation.

## State-Variable Control-System Models

One common state-variable model for dynamic systems has the form

$$
\begin{array}{rlr}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) & \text { (state equation) } \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t) & \text { (output equation) }
\end{array}
$$

where
$\mathbf{x}(t)=\quad N$ by 1 state vector ( $N$ state variables),
$\mathbf{u}(t)=R$ by 1 input vector ( $R$ inputs),
$\mathbf{y}(t)=M$ by 1 output vector ( $M$ outputs),
$\mathbf{A}=$ system matrix,
B $=$ input distribution matrix,
$\mathbf{C}=$ output matrix, and
D $=$ feed-through matrix.

The orders of the matrices are defined via variable definitions.
State-variable models automatically handle multiple inputs and multiple outputs. Furthermore, state-variable models can be formulated for open-loop system components or the complete closed-loop system.
The Laplace transform of the time-invariant state equation is

$$
s \mathbf{X}(s)-\mathbf{x}(0)=\mathbf{A} \mathbf{X}(s)+\mathbf{B U}(s)
$$

from which

$$
\mathbf{X}(s)=\Phi(s) \mathbf{x}(0)+\Phi(s) \mathbf{B U}(s)
$$

where the Laplace transform of the state transition matrix is

$$
\Phi(s)=[s \mathbf{I}-\mathbf{A}]^{-1} .
$$

The state-transition matrix

$$
\Phi(t)=L^{-1}\{\Phi(s)\}
$$

(also defined as $e^{\mathbf{A t}}$ ) can be used to write

$$
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \mathbf{x}(0)+\int_{0}^{t} \boldsymbol{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau
$$

The output can be obtained with the output equation; e.g., the Laplace transform output is

$$
\mathbf{Y}(s)=\{\mathbf{C} \Phi(s) \mathbf{B}+\mathbf{D}\} \mathbf{U}(s)+\mathbf{C} \Phi(s) \mathbf{x}(0)
$$

The latter term represents the output(s) due to initial conditions whereas the former term represents the output(s) due to the $\mathbf{U}(s)$ inputs and gives rise to transfer function definitions.

A spreadsheet is a collection of items arranged in a tabular format and organized in rows and columns. Typically, rows are assigned numbers ( $1,2,3, \ldots$ ) and columns are assigned letters (A, B, C, ...) as illustrated below.

|  | A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

A cell is a unique element identified by an address consisting of the column letter and the row number. For example, the address of the shaded cell shown above is E3. A cell may contain a number, formula, or a label.

By default, when a cell containing a formula is copied to another cell, the column and row references will automatically be changed (this is called relative addressing). The following example demonstrates relative addressing.

$$
\mathrm{C} 3=\mathrm{B} 4+\mathrm{D} 5
$$

| If C3 is copied to | The result is |
| :---: | :---: |
| D3 | D3 $=\mathrm{C} 4+$ E5 |
| C4 | $\mathrm{C} 4=\mathrm{B} 5+\mathrm{D} 6$ |
| B4 | $\mathrm{B} 4=\mathrm{A} 5+\mathrm{C} 6$ |
| E5 | $\mathrm{E} 5=\mathrm{D} 6+$ F7 |

If a row or column is referenced using absolute addressing (typically indicated with the \$ symbol), the row or column reference will not be changed when a cell containing a formula is copied to another cell. The following example illustrates absolute addressing.

$$
\mathrm{C} 3=\$ \mathrm{~B} 4+\mathrm{D} \$ 5+\$ \mathrm{~A} \$ 1
$$

| If C3 is copied to | Result is |
| :---: | :---: |
| D3 | $\mathrm{D} 3=\$ \mathrm{~B} 4+\mathrm{E} \$ 5+\$ \mathrm{~A} \$ 1$ |
| C 4 | $\mathrm{C} 4=\$ \mathrm{~B} 5+\mathrm{D} \$ 5+\$ \mathrm{~A} \$ 1$ |
| B 4 | $\mathrm{~B} 4=\$ \mathrm{~B} 5+\mathrm{C} \$ 5+\$ \mathrm{~A} \$ 1$ |
| E5 | $\mathrm{E} 5=\$ \mathrm{~B} 6+\mathrm{F} \$ 5+\$ \mathrm{~A} \$ 1$ |

ENGINEERING ECONOMICS

| Factor Name | Converts | Symbol | Formula |
| :--- | :---: | :---: | :---: |
| Single Payment <br> Compound Amount | to $F$ given $P$ | $(F / P, i \%, n)$ | $(1+i)^{n}$ |
| Single Payment <br> Present Worth | to $P$ given $F$ | $(P / F, i \%, n)$ | $(1+i)^{-n}$ |
| Uniform Series <br> Sinking Fund | to $A$ given $F$ | $(A / F, i \%, n)$ | $\frac{i}{(1+i)^{n}-1}$ |
| Capital Recovery | to $A$ given $P$ | $(A / P, i \%, n)$ | $\frac{i(1+i)^{n}}{(1+i)^{n}-1}$ |
| Uniform Series <br> Compound Amount | to $F$ given $A$ | $(F / A, i \%, n)$ | $\frac{(1+i)^{n}-1}{i}$ |
| Uniform Series <br> Present Worth | to $P$ given $A$ | $(P / G, i \%, n)$ | $\frac{(1+i)^{n}-1}{i(1+i)^{n}}$ |
| Uniform Gradient <br> Present Worth | to $F$ given $G$ | $(F / G, i \%, n)$ | $\frac{(1+i)^{n}-1}{i^{2}(1+i)^{n}-\frac{i(1+i)^{n}}{n}}$ |
| Uniform Gradient $\dagger$ <br> Future Worth | to $A$ given $G$ | $(A / G, i \%, n)$ | $\frac{(1+i)^{n}-1}{i^{2}}-\frac{n}{i}$ |
| Uniform Gradient <br> Uniform Series |  | $\frac{1}{i}-\frac{n}{(1+i)^{n}-1}$ |  |

## NOMENCLATURE AND DEFINITIONS

A ..........Uniform amount per interest period
B ..........Benefit
$B V$........Book Value
C ..........Cost
d...........Combined interest rate per interest period
$D_{j} \ldots \ldots .$. . Depreciation in year $j$
$F$..........Future worth, value, or amount
$f$............ General inflation rate per interest period
G..........Uniform gradient amount per interest period
$i . . . . . . . . . .$. Interest rate per interest period
$i_{\mathrm{e}} \ldots \ldots . . . .$. Annual effective interest rate
$m$..........Number of compounding periods per year
$n \ldots . . . . . .$. Number of compounding periods; or the expected life of an asset
$P$..........Present worth, value, or amount
$r$........... Nominal annual interest rate
$S_{n} \ldots \ldots . . .$. Expected salvage value in year $n$

## Subscripts

$j$. $\qquad$ at time $j$
n........... at time $n$
$\dagger \ldots \ldots \ldots . . F / G=(F / A-n) / i=(F / A) \times(A / G)$

## NON-ANNUAL COMPOUNDING

$$
i_{e}=\left(1+\frac{r}{m}\right)^{m}-1
$$

## BREAK-EVEN ANALYSIS

By altering the value of any one of the variables in a situation, holding all of the other values constant, it is possible to find a value for that variable that makes the two alternatives equally economical. This value is the breakeven point.
Break-even analysis is used to describe the percentage of capacity of operation for a manufacturing plant at which income will just cover expenses.

The payback period is the period of time required for the profit or other benefits of an investment to equal the cost of the investment.

## INFLATION

To account for inflation, the dollars are deflated by the general inflation rate per interest period $f$, and then they are shifted over the time scale using the interest rate per interest period $i$. Use a combined interest rate per interest period $d$ for computing present worth values $P$ and Net $P$. The formula for $d$ is

$$
d=i+f+(i \times f)
$$

## DEPRECIATION

Straight Line $\quad D_{j}=\frac{C-S_{n}}{n}$
Accelerated Cost Recovery System (ACRS)
$D_{j}=$ (factor) $C$
A table of modified factors is provided below.

## BOOK VALUE

$B V=$ initial cost $-\Sigma D_{j}$

## TAXATION

Income taxes are paid at a specific rate on taxable income. Taxable income is total income less depreciation and ordinary expenses. Expenses do not include capital items, which should be depreciated.

## CAPITALIZED COSTS

Capitalized costs are present worth values using an assumed perpetual period of time.

$$
\text { Capitalized Costs }=P=\frac{A}{i}
$$

## BONDS

Bond Value equals the present worth of the payments the purchaser (or holder of the bond) receives during the life of the bond at some interest rate $i$.
Bond Yield equals the computed interest rate of the bond value when compared with the bond cost.

## RATE-OF-RETURN

The minimum acceptable rate-of-return is that interest rate that one is willing to accept, or the rate one desires to earn on investments. The rate-of-return on an investment is the interest rate that makes the benefits and costs equal.

## BENEFIT-COST ANALYSIS

In a benefit-cost analysis, the benefits $B$ of a project should exceed the estimated costs $C$.

$$
B-C \geq 0, \text { or } \quad B / C \geq 1
$$

| MODIFIED ACRS FACTORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Recovery Period (Years) |  |  |  |  |
|  | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{7}$ | $\mathbf{1 0}$ |  |
| Year | Recovery Rate (Percent) |  |  |  |  |
| 1 | 33.3 | 20.0 | 14.3 | 10.0 |  |
| 2 | 44.5 | 32.0 | 24.5 | 18.0 |  |
| 3 | 14.8 | 19.2 | 17.5 | 14.4 |  |
| 4 | 7.4 | 11.5 | 12.5 | 11.5 |  |
| $\mathbf{5}$ |  | $\mathbf{1 1 . 5}$ | $\mathbf{8 . 9}$ | $\mathbf{9 . 2}$ |  |
| 6 |  | 5.8 | 8.9 | 7.4 |  |
| 7 |  |  | 8.9 | 6.6 |  |
| 8 |  |  | 4.5 | 6.6 |  |
| 9 |  |  |  | 6.5 |  |
| $\mathbf{1 0}$ |  |  |  | $\mathbf{6 . 5}$ |  |
| 11 |  |  |  | 3.3 |  |

Factor Table - $\boldsymbol{i}=\mathbf{0 . 5 0 \%}$

| $n$ | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $P / G$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \mathrm{P}$ | A/F | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9950 | 0.9950 | 0.0000 | 1.0050 | 1.0000 | 1.0050 | 1.0000 | 0.0000 |
| 2 | 0.9901 | 1.9851 | 0.9901 | 1.0100 | 2.0050 | 0.5038 | 0.4988 | 0.4988 |
| 3 | 0.9851 | 2.9702 | 2.9604 | 1.0151 | 3.0150 | 0.3367 | 0.3317 | 0.9967 |
| 4 | 0.9802 | 3.9505 | 5.9011 | 1.0202 | 4.0301 | 0.2531 | 0.2481 | 1.4938 |
| 5 | 0.9754 | 4.9259 | 9.8026 | 1.0253 | 5.0503 | 0.2030 | 0.1980 | 1.9900 |
| 6 | 0.9705 | 5.8964 | 14.6552 | 1.0304 | 6.0755 | 0.1696 | 0.1646 | 2.4855 |
| 7 | 0.9657 | 6.8621 | 20.4493 | 1.0355 | 7.1059 | 0.1457 | 0.1407 | 2.9801 |
| 8 | 0.9609 | 7.8230 | 27.1755 | 1.0407 | 8.1414 | 0.1278 | 0.1228 | 3.4738 |
| 9 | 0.9561 | 8.7791 | 34.8244 | 1.0459 | 9.1821 | 0.1139 | 0.1089 | 3.9668 |
| 10 | 0.9513 | 9.7304 | 43.3865 | 1.0511 | 10.2280 | 0.1028 | 0.0978 | 4.4589 |
| 11 | 0.9466 | 10.6770 | 52.8526 | 1.0564 | 11.2792 | 0.0937 | 0.0887 | 4.9501 |
| 12 | 0.9419 | 11.6189 | 63.2136 | 1.0617 | 12.3356 | 0.0861 | 0.0811 | 5.4406 |
| 13 | 0.9372 | 12.5562 | 74.4602 | 1.0670 | 13.3972 | 0.0796 | 0.0746 | 5.9302 |
| 14 | 0.9326 | 13.4887 | 86.5835 | 1.0723 | 14.4642 | 0.0741 | 0.0691 | 6.4190 |
| 15 | 0.9279 | 14.4166 | 99.5743 | 1.0777 | 15.5365 | 0.0694 | 0.0644 | 6.9069 |
| 16 | 0.9233 | 15.3399 | 113.4238 | 1.0831 | 16.6142 | 0.0652 | 0.0602 | 7.3940 |
| 17 | 0.9187 | 16.2586 | 128.1231 | 1.0885 | 17.6973 | 0.0615 | 0.0565 | 7.8803 |
| 18 | 0.9141 | 17.1728 | 143.6634 | 1.0939 | 18.7858 | 0.0582 | 0.0532 | 8.3658 |
| 19 | 0.9096 | 18.0824 | 160.0360 | 1.0994 | 19.8797 | 0.0553 | 0.0503 | 8.8504 |
| 20 | 0.9051 | 18.9874 | 177.2322 | 1.1049 | 20.9791 | 0.0527 | 0.0477 | 9.3342 |
| 21 | 0.9006 | 19.8880 | 195.2434 | 1.1104 | 22.0840 | 0.0503 | 0.0453 | 9.8172 |
| 22 | 0.8961 | 20.7841 | 214.0611 | 1.1160 | 23.1944 | 0.0481 | 0.0431 | 10.2993 |
| 23 | 0.8916 | 21.6757 | 233.6768 | 1.1216 | 24.3104 | 0.0461 | 0.0411 | 10.7806 |
| 24 | 0.8872 | 22.5629 | 254.0820 | 1.1272 | 25.4320 | 0.0443 | 0.0393 | 11.2611 |
| 25 | 0.8828 | 23.4456 | 275.2686 | 1.1328 | 26.5591 | 0.0427 | 0.0377 | 11.7407 |
| 30 | 0.8610 | 27.7941 | 392.6324 | 1.1614 | 32.2800 | 0.0360 | 0.0310 | 14.1265 |
| 40 | 0.8191 | 36.1722 | 681.3347 | 1.2208 | 44.1588 | 0.0276 | 0.0226 | 18.8359 |
| 50 | 0.7793 | 44.1428 | 1,035.6966 | 1.2832 | 56.6452 | 0.0227 | 0.0177 | 23.4624 |
| 60 | 0.7414 | 51.7256 | 1,448.6458 | 1.3489 | 69.7700 | 0.0193 | 0.0143 | 28.0064 |
| 100 | 0.6073 | 78.5426 | 3,562.7934 | 1.6467 | 129.3337 | 0.0127 | 0.0077 | 45.3613 |

Factor Table - $\boldsymbol{i}=\mathbf{1 . 0 0 \%}$

| n | $\boldsymbol{P} / \mathbf{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $P / G$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \mathbf{P}$ | A/F | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9901 | 0.9901 | 0.0000 | 1.0100 | 1.0000 | 1.0100 | 1.0000 | 0.0000 |
| 2 | 0.9803 | 1.9704 | 0.9803 | 1.0201 | 2.0100 | 0.5075 | 0.4975 | 0.4975 |
| 3 | 0.9706 | 2.9410 | 2.9215 | 1.0303 | 3.0301 | 0.3400 | 0.3300 | 0.9934 |
| 4 | 0.9610 | 3.9020 | 5.8044 | 1.0406 | 4.0604 | 0.2563 | 0.2463 | 1.4876 |
| 5 | 0.9515 | 4.8534 | 9.6103 | 1.0510 | 5.1010 | 0.2060 | 0.1960 | 1.9801 |
| 6 | 0.9420 | 5.7955 | 14.3205 | 1.0615 | 6.1520 | 0.1725 | 0.1625 | 2.4710 |
| 7 | 0.9327 | 6.7282 | 19.9168 | 1.0721 | 7.2135 | 0.1486 | 0.1386 | 2.9602 |
| 8 | 0.9235 | 7.6517 | 26.3812 | 1.0829 | 8.2857 | 0.1307 | 0.1207 | 3.4478 |
| 9 | 0.9143 | 8.5650 | 33.6959 | 1.0937 | 9.3685 | 0.1167 | 0.1067 | 3.9337 |
| 10 | 0.9053 | 9.4713 | 41.8435 | 1.1046 | 10.4622 | 0.1056 | 0.0956 | 4.4179 |
| 11 | 0.8963 | 10.3676 | 50.8067 | 1.1157 | 11.5668 | 0.0965 | 0.0865 | 4.9005 |
| 12 | 0.8874 | 11.2551 | 60.5687 | 1.1268 | 12.6825 | 0.0888 | 0.0788 | 5.3815 |
| 13 | 0.8787 | 12.1337 | 71.1126 | 1.1381 | 13.8093 | 0.0824 | 0.0724 | 5.8607 |
| 14 | 0.8700 | 13.0037 | 82.4221 | 1.1495 | 14.9474 | 0.0769 | 0.0669 | 6.3384 |
| 15 | 0.8613 | 13.8651 | 94.4810 | 1.1610 | 16.0969 | 0.0721 | 0.0621 | 6.8143 |
| 16 | 0.8528 | 14.7179 | 107.2734 | 1.1726 | 17.2579 | 0.0679 | 0.0579 | 7.2886 |
| 17 | 0.8444 | 15.5623 | 120.7834 | 1.1843 | 18.4304 | 0.0643 | 0.0543 | 7.7613 |
| 18 | 0.8360 | 16.3983 | 134.9957 | 1.1961 | 19.6147 | 0.0610 | 0.0510 | 8.2323 |
| 19 | 0.8277 | 17.2260 | 149.8950 | 1.2081 | 20.8109 | 0.0581 | 0.0481 | 8.7017 |
| 20 | 0.8195 | 18.0456 | 165.4664 | 1.2202 | 22.0190 | 0.0554 | 0.0454 | 9.1694 |
| 21 | 0.8114 | 18.8570 | 181.6950 | 1.2324 | 23.2392 | 0.0530 | 0.0430 | 9.6354 |
| 22 | 0.8034 | 19.6604 | 198.5663 | 1.2447 | 24.4716 | 0.0509 | 0.0409 | 10.0998 |
| 23 | 0.7954 | 20.4558 | 216.0660 | 1.2572 | 25.7163 | 0.0489 | 0.0389 | 10.5626 |
| 24 | 0.7876 | 21.2434 | 234.1800 | 1.2697 | 26.9735 | 0.0471 | 0.0371 | 11.0237 |
| 25 | 0.7798 | 22.0232 | 252.8945 | 1.2824 | 28.2432 | 0.0454 | 0.0354 | 11.4831 |
| 30 | 0.7419 | 25.8077 | 355.0021 | 1.3478 | 34.7849 | 0.0387 | 0.0277 | 13.7557 |
| 40 | 0.6717 | 32.8347 | 596.8561 | 1.4889 | 48.8864 | 0.0305 | 0.0205 | 18.1776 |
| 50 | 0.6080 | 39.1961 | 879.4176 | 1.6446 | 64.4632 | 0.0255 | 0.0155 | 22.4363 |
| 60 | 0.5504 | 44.9550 | 1,192.8061 | 1.8167 | 81.6697 | 0.0222 | 0.0122 | 26.5333 |
| 100 | 0.3697 | 63.0289 | 2,605.7758 | 2.7048 | 170.4814 | 0.0159 | 0.0059 | 41.3426 |

Factor Table - $\boldsymbol{i}=\mathbf{1 . 5 0 \%}$

| n | P/F | $\boldsymbol{P} / \boldsymbol{A}$ | $P / G$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | A/P | A/F | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9852 | 0.9852 | 0.0000 | 1.0150 | 1.0000 | 1.0150 | 1.0000 | 0.0000 |
| 2 | 0.9707 | 1.9559 | 0.9707 | 1.0302 | 2.0150 | 0.5113 | 0.4963 | 0.4963 |
| 3 | 0.9563 | 2.9122 | 2.8833 | 1.0457 | 3.0452 | 0.3434 | 0.3284 | 0.9901 |
| 4 | 0.9422 | 3.8544 | 5.7098 | 1.0614 | 4.0909 | 0.2594 | 0.2444 | 1.4814 |
| 5 | 0.9283 | 4.7826 | 9.4229 | 1.0773 | 5.1523 | 0.2091 | 0.1941 | 1.9702 |
| 6 | 0.9145 | 5.6972 | 13.9956 | 1.0934 | 6.2296 | 0.1755 | 0.1605 | 2.4566 |
| 7 | 0.9010 | 6.5982 | 19.4018 | 1.1098 | 7.3230 | 0.1516 | 0.1366 | 2.9405 |
| 8 | 0.8877 | 7.4859 | 26.6157 | 1.1265 | 8.4328 | 0.1336 | 0.1186 | 3.4219 |
| 9 | 0.8746 | 8.3605 | 32.6125 | 1.1434 | 9.5593 | 0.1196 | 0.1046 | 3.9008 |
| 10 | 0.8617 | 9.2222 | 40.3675 | 1.1605 | 10.7027 | 0.1084 | 0.0934 | 4.3772 |
| 11 | 0.8489 | 10.0711 | 48.8568 | 1.1779 | 11.8633 | 0.0993 | 0.0843 | 4.8512 |
| 12 | 0.8364 | 10.9075 | 58.0571 | 1.1956 | 13.0412 | 0.0917 | 0.0767 | 5.3227 |
| 13 | 0.8240 | 11.7315 | 67.9454 | 1.2136 | 14.2368 | 0.0852 | 0.0702 | 5.7917 |
| 14 | 0.8118 | 12.5434 | 78.4994 | 1.2318 | 15.4504 | 0.0797 | 0.0647 | 6.2582 |
| 15 | 0.7999 | 13.3432 | 89.6974 | 1.2502 | 16.6821 | 0.0749 | 0.0599 | 6.7223 |
| 16 | 0.7880 | 14.1313 | 101.5178 | 1.2690 | 17.9324 | 0.0708 | 0.0558 | 7.1839 |
| 17 | 0.7764 | 14.9076 | 113.9400 | 1.2880 | 19.2014 | 0.0671 | 0.0521 | 7.6431 |
| 18 | 0.7649 | 15.6726 | 126.9435 | 1.3073 | 20.4894 | 0.0638 | 0.0488 | 8.0997 |
| 19 | 0.7536 | 16.4262 | 140.5084 | 1.3270 | 21.7967 | 0.0609 | 0.0459 | 8.5539 |
| 20 | 0.7425 | 17.1686 | 154.6154 | 1.3469 | 23.1237 | 0.0582 | 0.0432 | 9.0057 |
| 21 | 0.7315 | 17.9001 | 169.2453 | 1.3671 | 24.4705 | 0.0559 | 0.0409 | 9.4550 |
| 22 | 0.7207 | 18.6208 | 184.3798 | 1.3876 | 25.8376 | 0.0537 | 0.0387 | 9.9018 |
| 23 | 0.7100 | 19.3309 | 200.0006 | 1.4084 | 27.2251 | 0.0517 | 0.0367 | 10.3462 |
| 24 | 0.6995 | 20.0304 | 216.0901 | 1.4295 | 28.6335 | 0.0499 | 0.0349 | 10.7881 |
| 25 | 0.6892 | 20.7196 | 232.6310 | 1.4509 | 30.0630 | 0.0483 | 0.0333 | 11.2276 |
| 30 | 0.6398 | 24.0158 | 321.5310 | 1.5631 | 37.5387 | 0.0416 | 0.0266 | 13.3883 |
| 40 | 0.5513 | 29.9158 | 524.3568 | 1.8140 | 54.2679 | 0.0334 | 0.0184 | 17.5277 |
| 50 | 0.4750 | 34.9997 | 749.9636 | 2.1052 | 73.6828 | 0.0286 | 0.0136 | 21.4277 |
| 60 | 0.4093 | 39.3803 | 988.1674 | 2.4432 | 96.2147 | 0.0254 | 0.0104 | 25.0930 |
| 100 | 0.2256 | 51.6247 | 1,937.4506 | 4.4320 | 228.8030 | 0.0194 | 0.0044 | 37.5295 |

Factor Table - $\boldsymbol{i}=\mathbf{2 . 0 0 \%}$

| $n$ | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $P / G$ | $\boldsymbol{F} / \mathbf{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | A/P | A/F | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9804 | 0.9804 | 0.0000 | 1.0200 | 1.0000 | 1.0200 | 1.0000 | 0.0000 |
| 2 | 0.9612 | 1.9416 | 0.9612 | 1.0404 | 2.0200 | 0.5150 | 0.4950 | 0.4950 |
| 3 | 0.9423 | 2.8839 | 2.8458 | 1.0612 | 3.0604 | 0.3468 | 0.3268 | 0.9868 |
| 4 | 0.9238 | 3.8077 | 5.6173 | 1.0824 | 4.1216 | 0.2626 | 0.2426 | 1.4752 |
| 5 | 0.9057 | 4.7135 | 9.2403 | 1.1041 | 5.2040 | 0.2122 | 0.1922 | 1.9604 |
| 6 | 0.8880 | 5.6014 | 13.6801 | 1.1262 | 6.3081 | 0.1785 | 0.1585 | 2.4423 |
| 7 | 0.8706 | 6.4720 | 18.9035 | 1.1487 | 7.4343 | 0.1545 | 0.1345 | 2.9208 |
| 8 | 0.8535 | 7.3255 | 24.8779 | 1.1717 | 8.5830 | 0.1365 | 0.1165 | 3.3961 |
| 9 | 0.8368 | 8.1622 | 31.5720 | 1.1951 | 9.7546 | 0.1225 | 0.1025 | 3.8681 |
| 10 | 0.8203 | 8.9826 | 38.9551 | 1.2190 | 10.9497 | 0.1113 | 0.0913 | 4.3367 |
| 11 | 0.8043 | 9.7868 | 46.9977 | 1.2434 | 12.1687 | 0.1022 | 0.0822 | 4.8021 |
| 12 | 0.7885 | 10.5753 | 55.6712 | 1.2682 | 13.4121 | 0.0946 | 0.0746 | 5.2642 |
| 13 | 0.7730 | 11.3484 | 64.9475 | 1.2936 | 14.6803 | 0.0881 | 0.0681 | 5.7231 |
| 14 | 0.7579 | 12.1062 | 74.7999 | 1.3195 | 15.9739 | 0.0826 | 0.0626 | 6.1786 |
| 15 | 0.7430 | 12.8493 | 85.2021 | 1.3459 | 17.2934 | 0.0778 | 0.0578 | 6.6309 |
| 16 | 0.7284 | 13.5777 | 96.1288 | 1.3728 | 18.6393 | 0.0737 | 0.0537 | 7.0799 |
| 17 | 0.7142 | 14.2919 | 107.5554 | 1.4002 | 20.0121 | 0.0700 | 0.0500 | 7.5256 |
| 18 | 0.7002 | 14.9920 | 119.4581 | 1.4282 | 21.4123 | 0.0667 | 0.0467 | 7.9681 |
| 19 | 0.6864 | 15.6785 | 131.8139 | 1.4568 | 22.8406 | 0.0638 | 0.0438 | 8.4073 |
| 20 | 0.6730 | 16.3514 | 144.6003 | 1.4859 | 24.2974 | 0.0612 | 0.0412 | 8.8433 |
| 21 | 0.6598 | 17.0112 | 157.7959 | 1.5157 | 25.7833 | 0.0588 | 0.0388 | 9.2760 |
| 22 | 0.6468 | 17.6580 | 171.3795 | 1.5460 | 27.2990 | 0.0566 | 0.0366 | 9.7055 |
| 23 | 0.6342 | 18.2922 | 185.3309 | 1.5769 | 28.8450 | 0.0547 | 0.0347 | 10.1317 |
| 24 | 0.6217 | 18.9139 | 199.6305 | 1.6084 | 30.4219 | 0.0529 | 0.0329 | 10.5547 |
| 25 | 0.6095 | 19.5235 | 214.2592 | 1.6406 | 32.0303 | 0.0512 | 0.0312 | 10.9745 |
| 30 | 0.5521 | 22.3965 | 291.7164 | 1.8114 | 40.5681 | 0.0446 | 0.0246 | 13.0251 |
| 40 | 0.4529 | 27.3555 | 461.9931 | 2.2080 | 60.4020 | 0.0366 | 0.0166 | 16.8885 |
| 50 | 0.3715 | 31.4236 | 642.3606 | 2.6916 | 84.5794 | 0.0318 | 0.0118 | 20.4420 |
| 60 | 0.3048 | 34.7609 | 823.6975 | 3.2810 | 114.0515 | 0.0288 | 0.0088 | 23.6961 |
| 100 | 0.1380 | 43.0984 | 1,464.7527 | 7.2446 | 312.2323 | 0.0232 | 0.0032 | 33.9863 |

Factor Table - $\boldsymbol{i}=\mathbf{4 . 0 0 \%}$

| n | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $\boldsymbol{P} / \boldsymbol{G}$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \boldsymbol{P}$ | A/F | A/G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9615 | 0.9615 | 0.0000 | 1.0400 | 1.0000 | 1.0400 | 1.0000 | 0.0000 |
| 2 | 0.9246 | 1.8861 | 0.9246 | 1.0816 | 2.0400 | 0.5302 | 0.4902 | 0.4902 |
| 3 | 0.8890 | 2.7751 | 2.7025 | 1.1249 | 3.1216 | 0.3603 | 0.3203 | 0.9739 |
| 4 | 0.8548 | 3.6299 | 5.2670 | 1.1699 | 4.2465 | 0.2755 | 0.2355 | 1.4510 |
| 5 | 0.8219 | 4.4518 | 8.5547 | 1.2167 | 5.4163 | 0.2246 | 0.1846 | 1.9216 |
| 6 | 0.7903 | 5.2421 | 12.5062 | 1.2653 | 6.6330 | 0.1908 | 0.1508 | 2.3857 |
| 7 | 0.7599 | 6.0021 | 17.0657 | 1.3159 | 7.8983 | 0.1666 | 0.1266 | 2.8433 |
| 8 | 0.7307 | 6.7327 | 22.1806 | 1.3686 | 9.2142 | 0.1485 | 0.1085 | 3.2944 |
| 9 | 0.7026 | 7.4353 | 27.8013 | 1.4233 | 10.5828 | 0.1345 | 0.0945 | 3.7391 |
| 10 | 0.6756 | 8.1109 | 33.8814 | 1.4802 | 12.0061 | 0.1233 | 0.0833 | 4.1773 |
| 11 | 0.6496 | 8.7605 | 40.3772 | 1.5395 | 13.4864 | 0.1141 | 0.0741 | 4.6090 |
| 12 | 0.6246 | 9.3851 | 47.2477 | 1.6010 | 15.0258 | 0.1066 | 0.0666 | 5.0343 |
| 13 | 0.6006 | 9.9856 | 54.4546 | 1.6651 | 16.6268 | 0.1001 | 0.0601 | 5.4533 |
| 14 | 0.5775 | 10.5631 | 61.9618 | 1.7317 | 18.2919 | 0.0947 | 0.0547 | 5.8659 |
| 15 | 0.5553 | 11.1184 | 69.7355 | 1.8009 | 20.0236 | 0.0899 | 0.0499 | 6.2721 |
| 16 | 0.5339 | 11.6523 | 77.7441 | 1.8730 | 21.8245 | 0.0858 | 0.0458 | 6.6720 |
| 17 | 0.5134 | 12.1657 | 85.9581 | 1.9479 | 23.6975 | 0.0822 | 0.0422 | 7.0656 |
| 18 | 0.4936 | 12.6593 | 94.3498 | 2.0258 | 25.6454 | 0.0790 | 0.0390 | 7.4530 |
| 19 | 0.4746 | 13.1339 | 102.8933 | 2.1068 | 27.6712 | 0.0761 | 0.0361 | 7.8342 |
| 20 | 0.4564 | 13.5903 | 111.5647 | 2.1911 | 29.7781 | 0.0736 | 0.0336 | 8.2091 |
| 21 | 0.4388 | 14.0292 | 120.3414 | 2.2788 | 31.9692 | 0.0713 | 0.0313 | 8.5779 |
| 22 | 0.4220 | 14.4511 | 129.2024 | 2.3699 | 34.2480 | 0.0692 | 0.0292 | 8.9407 |
| 23 | 0.4057 | 14.8568 | 138.1284 | 2.4647 | 36.6179 | 0.0673 | 0.0273 | 9.2973 |
| 24 | 0.3901 | 15.2470 | 147.1012 | 2.5633 | 39.0826 | 0.0656 | 0.0256 | 9.6479 |
| 25 | 0.3751 | 15.6221 | 156.1040 | 2.6658 | 41.6459 | 0.0640 | 0.0240 | 9.9925 |
| 30 | 0.3083 | 17.2920 | 201.0618 | 3.2434 | 56.0849 | 0.0578 | 0.0178 | 11.6274 |
| 40 | 0.2083 | 19.7928 | 286.5303 | 4.8010 | 95.0255 | 0.0505 | 0.0105 | 14.4765 |
| 50 | 0.1407 | 21.4822 | 361.1638 | 7.1067 | 152.6671 | 0.0466 | 0.0066 | 16.8122 |
| 60 | 0.0951 | 22.6235 | 422.9966 | 10.5196 | 237.9907 | 0.0442 | 0.0042 | 18.6972 |
| 100 | 0.0198 | 24.5050 | 563.1249 | 50.5049 | 1,237.6237 | 0.0408 | 0.0008 | 22.9800 |

Factor Table $\boldsymbol{-} \boldsymbol{i}=\mathbf{6 . 0 0 \%}$

| $n$ | P/F | $\boldsymbol{P} / \boldsymbol{A}$ | $\boldsymbol{P} / \boldsymbol{G}$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \boldsymbol{P}$ | $A / F$ | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9434 | 0.9434 | 0.0000 | 1.0600 | 1.0000 | 1.0600 | 1.0000 | 0.0000 |
| 2 | 0.8900 | 1.8334 | 0.8900 | 1.1236 | 2.0600 | 0.5454 | 0.4854 | 0.4854 |
| 3 | 0.8396 | 2.6730 | 2.5692 | 1.1910 | 3.1836 | 0.3741 | 0.3141 | 0.9612 |
| 4 | 0.7921 | 3.4651 | 4.9455 | 1.2625 | 4.3746 | 0.2886 | 0.2286 | 1.4272 |
| 5 | 0.7473 | 4.2124 | 7.9345 | 1.3382 | 5.6371 | 0.2374 | 0.1774 | 1.8836 |
| 6 | 0.7050 | 4.9173 | 11.4594 | 1.4185 | 6.9753 | 0.2034 | 0.1434 | 2.3304 |
| 7 | 0.6651 | 5.5824 | 15.4497 | 1.5036 | 8.3938 | 0.1791 | 0.1191 | 2.7676 |
| 8 | 0.6274 | 6.2098 | 19.8416 | 1.5938 | 9.8975 | 0.1610 | 0.1010 | 3.1952 |
| 9 | 0.5919 | 6.8017 | 24.5768 | 1.6895 | 11.4913 | 0.1470 | 0.0870 | 3.6133 |
| 10 | 0.5584 | 7.3601 | 29.6023 | 1.7908 | 13.1808 | 0.1359 | 0.0759 | 4.0220 |
| 11 | 0.5268 | 7.8869 | 34.8702 | 1.8983 | 14.9716 | 0.1268 | 0.0668 | 4.4213 |
| 12 | 0.4970 | 8.3838 | 40.3369 | 2.0122 | 16.8699 | 0.1193 | 0.0593 | 4.8113 |
| 13 | 0.4688 | 8.8527 | 45.9629 | 2.1329 | 18.8821 | 0.1130 | 0.0530 | 5.1920 |
| 14 | 0.4423 | 9.2950 | 51.7128 | 2.2609 | 21.0151 | 0.1076 | 0.0476 | 5.5635 |
| 15 | 0.4173 | 9.7122 | 57.5546 | 2.3966 | 23.2760 | 0.1030 | 0.0430 | 5.9260 |
| 16 | 0.3936 | 10.1059 | 63.4592 | 2.5404 | 25.6725 | 0.0990 | 0.0390 | 6.2794 |
| 17 | 0.3714 | 10.4773 | 69.4011 | 2.6928 | 28.2129 | 0.0954 | 0.0354 | 6.6240 |
| 18 | 0.3505 | 10.8276 | 75.3569 | 2.8543 | 30.9057 | 0.0924 | 0.0324 | 6.9597 |
| 19 | 0.3305 | 11.1581 | 81.3062 | 3.0256 | 33.7600 | 0.0896 | 0.0296 | 7.2867 |
| 20 | 0.3118 | 11.4699 | 87.2304 | 3.2071 | 36.7856 | 0.0872 | 0.0272 | 7.6051 |
| 21 | 0.2942 | 11.7641 | 93.1136 | 3.3996 | 39.9927 | 0.0850 | 0.0250 | 7.9151 |
| 22 | 0.2775 | 12.0416 | 98.9412 | 3.6035 | 43.3923 | 0.0830 | 0.0230 | 8.2166 |
| 23 | 0.2618 | 12.3034 | 104.7007 | 3.8197 | 46.9958 | 0.0813 | 0.0213 | 8.5099 |
| 24 | 0.2470 | 12.5504 | 110.3812 | 4.0489 | 50.8156 | 0.0797 | 0.0197 | 8.7951 |
| 25 | 0.2330 | 12.7834 | 115.9732 | 4.2919 | 54.8645 | 0.0782 | 0.0182 | 9.0722 |
| 30 | 0.1741 | 13.7648 | 142.3588 | 5.7435 | 79.0582 | 0.0726 | 0.0126 | 10.3422 |
| 40 | 0.0972 | 15.0463 | 185.9568 | 10.2857 | 154.7620 | 0.0665 | 0.0065 | 12.3590 |
| 50 | 0.0543 | 15.7619 | 217.4574 | 18.4202 | 290.3359 | 0.0634 | 0.0034 | 13.7964 |
| 60 | 0.0303 | 16.1614 | 239.0428 | 32.9877 | 533.1282 | 0.0619 | 0.0019 | 14.7909 |
| 100 | 0.0029 | 16.6175 | 272.0471 | 339.3021 | 5,638.3681 | 0.0602 | 0.0002 | 16.3711 |

Factor Table $-\boldsymbol{i}=\mathbf{8 . 0 0 \%}$

| $\boldsymbol{n}$ | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $\boldsymbol{P} / \boldsymbol{G}$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \mathrm{P}$ | $\boldsymbol{A} / \boldsymbol{F}$ | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9259 | 0.9259 | 0.0000 | 1.0800 | 1.0000 | 1.0800 | 1.0000 | 0.0000 |
| 2 | 0.8573 | 1.7833 | 0.8573 | 1.1664 | 2.0800 | 0.5608 | 0.4808 | 0.4808 |
| 3 | 0.7938 | 2.5771 | 2.4450 | 1.2597 | 3.2464 | 0.3880 | 0.3080 | 0.9487 |
| 4 | 0.7350 | 3.3121 | 4.6501 | 1.3605 | 4.5061 | 0.3019 | 0.2219 | 1.4040 |
| 5 | 0.6806 | 3.9927 | 7.3724 | 1.4693 | 5.8666 | 0.2505 | 0.1705 | 1.8465 |
| 6 | 0.6302 | 4.6229 | 10.5233 | 1.5869 | 7.3359 | 0.2163 | 0.1363 | 2.2763 |
| 7 | 0.5835 | 5.2064 | 14.0242 | 1.7138 | 8.9228 | 0.1921 | 0.1121 | 2.6937 |
| 8 | 0.5403 | 5.7466 | 17.8061 | 1.8509 | 10.6366 | 0.1740 | 0.0940 | 3.0985 |
| 9 | 0.5002 | 6.2469 | 21.8081 | 1.9990 | 12.4876 | 0.1601 | 0.0801 | 3.4910 |
| 10 | 0.4632 | 6.7101 | 25.9768 | 2.1589 | 14.4866 | 0.1490 | 0.0690 | 3.8713 |
| 11 | 0.4289 | 7.1390 | 30.2657 | 2.3316 | 16.6455 | 0.1401 | 0.0601 | 4.2395 |
| 12 | 0.3971 | 7.5361 | 34.6339 | 2.5182 | 18.9771 | 0.1327 | 0.0527 | 4.5957 |
| 13 | 0.3677 | 7.9038 | 39.0463 | 2.7196 | 21.4953 | 0.1265 | 0.0465 | 4.9402 |
| 14 | 0.3405 | 8.2442 | 43.4723 | 2.9372 | 24.2149 | 0.1213 | 0.0413 | 5.2731 |
| 15 | 0.3152 | 8.5595 | 47.8857 | 3.1722 | 27.1521 | 0.1168 | 0.0368 | 5.5945 |
| 16 | 0.2919 | 8.8514 | 52.2640 | 3.4259 | 30.3243 | 0.1130 | 0.0330 | 5.9046 |
| 17 | 0.2703 | 9.1216 | 56.5883 | 3.7000 | 33.7502 | 0.1096 | 0.0296 | 6.2037 |
| 18 | 0.2502 | 9.3719 | 60.8426 | 3.9960 | 37.4502 | 0.1067 | 0.0267 | 6.4920 |
| 19 | 0.2317 | 9.6036 | 65.0134 | 4.3157 | 41.4463 | 0.1041 | 0.0241 | 6.7697 |
| 20 | 0.2145 | 9.8181 | 69.0898 | 4.6610 | 45.7620 | 0.1019 | 0.0219 | 7.0369 |
| 21 | 0.1987 | 10.0168 | 73.0629 | 5.0338 | 50.4229 | 0.0998 | 0.0198 | 7.2940 |
| 22 | 0.1839 | 10.2007 | 76.9257 | 5.4365 | 55.4568 | 0.0980 | 0.0180 | 7.5412 |
| 23 | 0.1703 | 10.3711 | 80.6726 | 5.8715 | 60.8933 | 0.0964 | 0.0164 | 7.7786 |
| 24 | 0.1577 | 10.5288 | 84.2997 | 6.3412 | 66.7648 | 0.0950 | 0.0150 | 8.0066 |
| 25 | 0.1460 | 10.6748 | 87.8041 | 6.8485 | 73.1059 | 0.0937 | 0.0137 | 8.2254 |
| 30 | 0.0994 | 11.2578 | 103.4558 | 10.0627 | 113.2832 | 0.0888 | 0.0088 | 9.1897 |
| 40 | 0.0460 | 11.9246 | 126.0422 | 21.7245 | 259.0565 | 0.0839 | 0.0039 | 10.5699 |
| 50 | 0.0213 | 12.2335 | 139.5928 | 46.9016 | 573.7702 | 0.0817 | 0.0017 | 11.4107 |
| 60 | 0.0099 | 12.3766 | 147.3000 | 101.2571 | 1,253.2133 | 0.0808 | 0.0008 | 11.9015 |
| 100 | 0.0005 | 12.4943 | 155.6107 | 2,199.7613 | 27,484.5157 | 0.0800 |  | 12.4545 |

Factor Table $-\boldsymbol{i}=\mathbf{1 0 . 0 0 \%}$

| $n$ | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $\boldsymbol{P} / \boldsymbol{G}$ | $\boldsymbol{F} / \boldsymbol{P}$ | $F / \boldsymbol{A}$ | $\boldsymbol{A} / \mathrm{P}$ | $A / F$ | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9091 | 0.9091 | 0.0000 | 1.1000 | 1.0000 | 1.1000 | 1.0000 | 0.0000 |
| 2 | 0.8264 | 1.7355 | 0.8264 | 1.2100 | 2.1000 | 0.5762 | 0.4762 | 0.4762 |
| 3 | 0.7513 | 2.4869 | 2.3291 | 1.3310 | 3.3100 | 0.4021 | 0.3021 | 0.9366 |
| 4 | 0.6830 | 3.1699 | 4.3781 | 1.4641 | 4.6410 | 0.3155 | 0.2155 | 1.3812 |
| 5 | 0.6209 | 3.7908 | 6.8618 | 1.6105 | 6.1051 | 0.2638 | 0.1638 | 1.8101 |
| 6 | 0.5645 | 4.3553 | 9.6842 | 1.7716 | 7.7156 | 0.2296 | 0.1296 | 2.2236 |
| 7 | 0.5132 | 4.8684 | 12.7631 | 1.9487 | 9.4872 | 0.2054 | 0.1054 | 2.6216 |
| 8 | 0.4665 | 5.3349 | 16.0287 | 2.1436 | 11.4359 | 0.1874 | 0.0874 | 3.0045 |
| 9 | 0.4241 | 5.7590 | 19.4215 | 2.3579 | 13.5735 | 0.1736 | 0.0736 | 3.3724 |
| 10 | 0.3855 | 6.1446 | 22.8913 | 2.5937 | 15.9374 | 0.1627 | 0.0627 | 3.7255 |
| 11 | 0.3505 | 6.4951 | 26.3962 | 2.8531 | 18.5312 | 0.1540 | 0.0540 | 4.0641 |
| 12 | 0.3186 | 6.8137 | 29.9012 | 3.1384 | 21.3843 | 0.1468 | 0.0468 | 4.3884 |
| 13 | 0.2897 | 7.1034 | 33.3772 | 3.4523 | 24.5227 | 0.1408 | 0.0408 | 4.6988 |
| 14 | 0.2633 | 7.3667 | 36.8005 | 3.7975 | 27.9750 | 0.1357 | 0.0357 | 4.9955 |
| 15 | 0.2394 | 7.6061 | 40.1520 | 4.1772 | 31.7725 | 0.1315 | 0.0315 | 5.2789 |
| 16 | 0.2176 | 7.8237 | 43.4164 | 4.5950 | 35.9497 | 0.1278 | 0.0278 | 5.5493 |
| 17 | 0.1978 | 8.0216 | 46.5819 | 5.5045 | 40.5447 | 0.1247 | 0.0247 | 5.8071 |
| 18 | 0.1799 | 8.2014 | 49.6395 | 5.5599 | 45.5992 | 0.1219 | 0.0219 | 6.0526 |
| 19 | 0.1635 | 8.3649 | 52.5827 | 6.1159 | 51.1591 | 0.1195 | 0.0195 | 6.2861 |
| 20 | 0.1486 | 8.5136 | 55.4069 | 6.7275 | 57.2750 | 0.1175 | 0.0175 | 6.5081 |
| 21 | 0.1351 | 8.6487 | 58.1095 | 7.4002 | 64.0025 | 0.1156 | 0.0156 | 6.7189 |
| 22 | 0.1228 | 8.7715 | 60.6893 | 8.1403 | 71.4027 | 0.1140 | 0.0140 | 6.9189 |
| 23 | 0.1117 | 8.8832 | 63.1462 | 8.9543 | 79.5430 | 0.1126 | 0.0126 | 7.1085 |
| 24 | 0.1015 | 8.9847 | 65.4813 | 9.8497 | 88.4973 | 0.1113 | 0.0113 | 7.2881 |
| 25 | 0.0923 | 9.0770 | 67.6964 | 10.8347 | 98.3471 | 0.1102 | 0.0102 | 7.4580 |
| 30 | 0.0573 | 9.4269 | 77.0766 | 17.4494 | 164.4940 | 0.1061 | 0.0061 | 8.1762 |
| 40 | 0.0221 | 9.7791 | 88.9525 | 45.2593 | 442.5926 | 0.1023 | 0.0023 | 9.0962 |
| 50 | 0.0085 | 9.9148 | 94.8889 | 117.3909 | 1,163.9085 | 0.1009 | 0.0009 | 9.5704 |
| 60 | 0.0033 | 9.9672 | 97.7010 | 304.4816 | 3,034.8164 | 0.1003 | 0.0003 | 9.8023 |
| 100 | 0.0001 | 9.9993 | 99.9202 | 13,780.6123 | 137,796.1234 | 0.1000 |  | 9.9927 |

Factor Table $\boldsymbol{- i}=\mathbf{1 2 . 0 0 \%}$

| n | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $\boldsymbol{P} / \boldsymbol{G}$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | $\boldsymbol{A} / \boldsymbol{P}$ | A/F | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.8929 | 0.8929 | 0.0000 | 1.1200 | 1.0000 | 1.1200 | 1.0000 | 0.0000 |
| 2 | 0.7972 | 1.6901 | 0.7972 | 1.2544 | 2.1200 | 0.5917 | 0.4717 | 0.4717 |
| 3 | 0.7118 | 2.4018 | 2.2208 | 1.4049 | 3.3744 | 0.4163 | 0.2963 | 0.9246 |
| 4 | 0.6355 | 3.0373 | 4.1273 | 1.5735 | 4.7793 | 0.3292 | 0.2092 | 1.3589 |
| 5 | 0.5674 | 3.6048 | 6.3970 | 1.7623 | 6.3528 | 0.2774 | 0.1574 | 1.7746 |
| 6 | 0.5066 | 4.1114 | 8.9302 | 1.9738 | 8.1152 | 0.2432 | 0.1232 | 2.1720 |
| 7 | 0.4523 | 4.5638 | 11.6443 | 2.2107 | 10.0890 | 0.2191 | 0.0991 | 2.5515 |
| 8 | 0.4039 | 4.9676 | 14.4714 | 2.4760 | 12.2997 | 0.2013 | 0.0813 | 2.9131 |
| 9 | 0.3606 | 5.3282 | 17.3563 | 2.7731 | 14.7757 | 0.1877 | 0.0677 | 3.2574 |
| 10 | 0.3220 | 5.6502 | 20.2541 | 3.1058 | 17.5487 | 0.1770 | 0.0570 | 3.5847 |
| 11 | 0.2875 | 5.9377 | 23.1288 | 3.4785 | 20.6546 | 0.1684 | 0.0484 | 3.8953 |
| 12 | 0.2567 | 6.1944 | 25.9523 | 3.8960 | 24.1331 | 0.1614 | 0.0414 | 4.1897 |
| 13 | 0.2292 | 6.4235 | 28.7024 | 4.3635 | 28.0291 | 0.1557 | 0.0357 | 4.4683 |
| 14 | 0.2046 | 6.6282 | 31.3624 | 4.8871 | 32.3926 | 0.1509 | 0.0309 | 4.7317 |
| 15 | 0.1827 | 6.8109 | 33.9202 | 5.4736 | 37.2797 | 0.1468 | 0.0268 | 4.9803 |
| 16 | 0.1631 | 6.9740 | 36.3670 | 6.1304 | 42.7533 | 0.1434 | 0.0234 | 5.2147 |
| 17 | 0.1456 | 7.1196 | 38.6973 | 6.8660 | 48.8837 | 0.1405 | 0.0205 | 5.4353 |
| 18 | 0.1300 | 7.2497 | 40.9080 | 7.6900 | 55.7497 | 0.1379 | 0.0179 | 5.6427 |
| 19 | 0.1161 | 7.3658 | 42.9979 | 8.6128 | 63.4397 | 0.1358 | 0.0158 | 5.8375 |
| 20 | 0.1037 | 7.4694 | 44.9676 | 9.6463 | 72.0524 | 0.1339 | 0.0139 | 6.0202 |
| 21 | 0.0926 | 7.5620 | 46.8188 | 10.8038 | 81.6987 | 0.1322 | 0.0122 | 6.1913 |
| 22 | 0.0826 | 7.6446 | 48.5543 | 12.1003 | 92.5026 | 0.1308 | 0.0108 | 6.3514 |
| 23 | 0.0738 | 7.7184 | 50.1776 | 13.5523 | 104.6029 | 0.1296 | 0.0096 | 6.5010 |
| 24 | 0.0659 | 7.7843 | 51.6929 | 15.1786 | 118.1552 | 0.1285 | 0.0085 | 6.6406 |
| 25 | 0.0588 | 7.8431 | 53.1046 | 17.0001 | 133.3339 | 0.1275 | 0.0075 | 6.7708 |
| 30 | 0.0334 | 8.0552 | 58.7821 | 29.9599 | 241.3327 | 0.1241 | 0.0041 | 7.2974 |
| 40 | 0.0107 | 8.2438 | 65.1159 | 93.0510 | 767.0914 | 0.1213 | 0.0013 | 7.8988 |
| 50 | 0.0035 | 8.3045 | 67.7624 | 289.0022 | 2,400.0182 | 0.1204 | 0.0004 | 8.1597 |
| 60 | 0.0011 | 8.3240 | 68.8100 | 897.5969 | 7,471.6411 | 0.1201 | 0.0001 | 8.2664 |
| 100 |  | 8.3332 | 69.4336 | 83,522.2657 | 696,010.5477 | 0.1200 |  | 8.3321 |

Factor Table $\boldsymbol{- i}=\mathbf{1 8 . 0 0 \%}$

| n | $\boldsymbol{P} / \boldsymbol{F}$ | $\boldsymbol{P} / \boldsymbol{A}$ | $P / G$ | $\boldsymbol{F} / \boldsymbol{P}$ | $\boldsymbol{F} / \boldsymbol{A}$ | A/P | $A / F$ | $A / G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.8475 | 0.8475 | 0.0000 | 1.1800 | 1.0000 | 1.1800 | 1.0000 | 0.0000 |
| 2 | 0.7182 | 1.5656 | 0.7182 | 1.3924 | 2.1800 | 0.6387 | 0.4587 | 0.4587 |
| 3 | 0.6086 | 2.1743 | 1.9354 | 1.6430 | 3.5724 | 0.4599 | 0.2799 | 0.8902 |
| 4 | 0.5158 | 2.6901 | 3.4828 | 1.9388 | 5.2154 | 0.3717 | 0.1917 | 1.2947 |
| 5 | 0.4371 | 3.1272 | 5.2312 | 2.2878 | 7.1542 | 0.3198 | 0.1398 | 1.6728 |
| 6 | 0.3704 | 3.4976 | 7.0834 | 2.6996 | 9.4423 | 0.2859 | 0.1059 | 2.0252 |
| 7 | 0.3139 | 3.8115 | 8.9670 | 3.1855 | 12.1415 | 0.2624 | 0.0824 | 2.3526 |
| 8 | 0.2660 | 4.0776 | 10.8292 | 3.7589 | 15.3270 | 0.2452 | 0.0652 | 2.6558 |
| 9 | 0.2255 | 4.3030 | 12.6329 | 4.4355 | 19.0859 | 0.2324 | 0.0524 | 2.9358 |
| 10 | 0.1911 | 4.4941 | 14.3525 | 5.2338 | 23.5213 | 0.2225 | 0.0425 | 3.1936 |
| 11 | 0.1619 | 4.6560 | 15.9716 | 6.1759 | 28.7551 | 0.2148 | 0.0348 | 3.4303 |
| 12 | 0.1372 | 4.7932 | 17.4811 | 7.2876 | 34.9311 | 0.2086 | 0.0286 | 3.6470 |
| 13 | 0.1163 | 4.9095 | 18.8765 | 8.5994 | 42.2187 | 0.2037 | 0.0237 | 3.8449 |
| 14 | 0.0985 | 5.0081 | 20.1576 | 10.1472 | 50.8180 | 0.1997 | 0.0197 | 4.0250 |
| 15 | 0.0835 | 5.0916 | 21.3269 | 11.9737 | 60.9653 | 0.1964 | 0.0164 | 4.1887 |
| 16 | 0.0708 | 5.1624 | 22.3885 | 14.1290 | 72.9390 | 0.1937 | 0.0137 | 4.3369 |
| 17 | 0.0600 | 5.2223 | 23.3482 | 16.6722 | 87.0680 | 0.1915 | 0.0115 | 4.4708 |
| 18 | 0.0508 | 5.2732 | 24.2123 | 19.6731 | 103.7403 | 0.1896 | 0.0096 | 4.5916 |
| 19 | 0.0431 | 5.3162 | 24.9877 | 23.2144 | 123.4135 | 0.1881 | 0.0081 | 4.7003 |
| 20 | 0.0365 | 5.3527 | 25.6813 | 27.3930 | 146.6280 | 0.1868 | 0.0068 | 4.7978 |
| 21 | 0.0309 | 5.3837 | 26.3000 | 32.3238 | 174.0210 | 0.1857 | 0.0057 | 4.8851 |
| 22 | 0.0262 | 5.4099 | 26.8506 | 38.1421 | 206.3448 | 0.1848 | 0.0048 | 4.9632 |
| 23 | 0.0222 | 5.4321 | 27.3394 | 45.0076 | 244.4868 | 0.1841 | 0.0041 | 5.0329 |
| 24 | 0.0188 | 5.4509 | 27.7725 | 53.1090 | 289.4944 | 0.1835 | 0.0035 | 5.0950 |
| 25 | 0.0159 | 5.4669 | 28.1555 | 62.6686 | 342.6035 | 0.1829 | 0.0029 | 5.1502 |
| 30 | 0.0070 | 5.5168 | 29.4864 | 143.3706 | 790.9480 | 0.1813 | 0.0013 | 5.3448 |
| 40 | 0.0013 | 5.5482 | 30.5269 | 750.3783 | 4,163.2130 | 0.1802 | 0.0002 | 5.5022 |
| 50 | 0.0003 | 5.5541 | 30.7856 | 3,927.3569 | 21,813.0937 | 0.1800 |  | 5.5428 |
| 60 | 0.0001 | 5.5553 | 30.8465 | 20,555.1400 | 114,189.6665 | 0.1800 |  | 5.5526 |
| 100 |  | 5.5556 | 30.8642 | 15,424,131.91 | 85,689,616.17 | 0.1800 |  | 5.5555 |

## ETHICS

Engineering is considered to be a "profession" rather than an "occupation" because of several important characteristics shared with other recognized learned professions, law, medicine, and theology: special knowledge, special privileges, and special responsibilities. Professions are based on a large knowledge base requiring extensive training. Professional skills are important to the well-being of society. Professions are self-regulating, in that they control the training and evaluation processes that admit new persons to the field. Professionals have autonomy in the workplace; they are expected to utilize their independent judgment in carrying out their professional responsibilities. Finally, professions are regulated by ethical standards. ${ }^{1}$
The expertise possessed by engineers is vitally important to public welfare. In order to serve the public effectively, engineers must maintain a high level of technical competence. However, a high level of technical expertise without adherence to ethical guidelines is as much a threat to public welfare as is professional incompetence. Therefore, engineers must also be guided by ethical principles.
The ethical principles governing the engineering profession are embodied in codes of ethics. Such codes have been adopted by state boards of registration, professional engineering societies, and even by some private industries. An example of one such code is the NCEES Rules of Professional Conduct, found in Section 240 of Model Rules and presented here. As part of his/her responsibility to the public, an engineer is responsible for knowing and abiding by the code. Additional rules of conduct are also included in Model Rules.
The three major sections of the model rules address (1) Licensee's Obligation to Society, (2) Licensee's Obligation to Employers and Clients, and (3) Licensee's Obligation to Other Licensees. The principles amplified in these sections are important guides to appropriate behavior of professional engineers.
Application of the code in many situations is not controversial. However, there may be situations in which applying the code may raise more difficult issues. In particular, there may be circumstances in which terminology in the code is not clearly defined, or in which two sections of the code may be in conflict. For example, what constitutes "valuable consideration" or "adequate" knowledge may be interpreted differently by qualified professionals. These types of questions are called conceptual issues, in which definitions of terms may be in dispute. In other situations, factual issues may also affect ethical dilemmas. Many decisions regarding engineering design may be based upon interpretation of disputed or incomplete information. In addition, tradeoffs revolving around competing issues of risk $v s$. benefit, or safety $v s$. economics may require judgments that are not fully addressed simply by application of the code.

No code can give immediate and mechanical answers to all ethical and professional problems that an engineer may face. Creative problem solving is often called for in ethics, just as it is in other areas of engineering.

## Model Rules, Section 240.15, Rules of Professional Conduct

## A. LICENSEE'S OBLIGATION TO SOCIETY

1. Licensees, in the performance of their services for clients, employers, and customers, shall be cognizant that their first and foremost responsibility is to the public welfare.
2. Licensees shall approve and seal only those design documents and surveys that conform to accepted engineering and surveying standards and safeguard the life, health, property, and welfare of the public.
3. Licensees shall notify their employer or client and such other authority as may be appropriate when their professional judgment is overruled under circumstances where the life, health, property, or welfare of the public is endangered.
4. Licensees shall be objective and truthful in professional reports, statements, or testimony. They shall include all relevant and pertinent information in such reports, statements, or testimony.
5. Licensees shall express a professional opinion publicly only when it is founded upon an adequate knowledge of the facts and a competent evaluation of the subject matter.
6. Licensees shall issue no statements, criticisms, or arguments on technical matters which are inspired or paid for by interested parties, unless they explicitly identify the interested parties on whose behalf they are speaking and reveal any interest they have in the matters.
7. Licensees shall not permit the use of their name or firm name by, nor associate in the business ventures with, any person or firm which is engaging in fraudulent or dishonest business or professional practices.
8. Licensees having knowledge of possible violations of any of these Rules of Professional Conduct shall provide the board with the information and assistance necessary to make the final determination of such violation.
[^5]
## B. LICENSEE'S OBLIGATION TO EMPLOYER AND CLIENTS

1. Licensees shall undertake assignments only when qualified by education or experience in the specific technical fields of engineering or surveying involved.
2. Licensees shall not affix their signatures or seals to any plans or documents dealing with subject matter in which they lack competence, nor to any such plan or document not prepared under their direct control and personal supervision.
3. Licensees may accept assignments for coordination of an entire project, provided that each design segment is signed and sealed by the licensee responsible for preparation of that design segment.
4. Licensees shall not reveal facts, data, or information obtained in a professional capacity without the prior consent of the client or employer except as authorized or required by law. Licensees shall not solicit or accept gratuities, directly or indirectly, from contractors, their agents, or other parties in connection with work for employers or clients.
5. Licensees shall make full prior disclosures to their employers or clients of potential conflicts of interest or other circumstances which could influence or appear to influence their judgment or the quality of their service.
6. Licensees shall not accept compensation, financial or otherwise, from more than one party for services pertaining to the same project, unless the circumstances are fully disclosed and agreed to by all interested parties.
7. Licensees shall not solicit or accept a professional contract from a governmental body on which a principal or officer of their organization serves as a member. Conversely, licensees serving as members, advisors, or employees of a government body or department, who are the principals or employees of a private concern, shall not participate in decisions with respect to professional services offered or provided by said concern to the governmental body which they serve.

## C. LICENSEE'S OBLIGATION TO OTHER LICENSEES

1. Licensees shall not falsify or permit misrepresentation of their, or their associates', academic or professional qualifications. They shall not misrepresent or exaggerate their degree of responsibility in prior assignments nor the complexity of said assignments. Presentations incident to the solicitation of employment or business shall not misrepresent pertinent facts concerning employers, employees, associates, joint ventures, or past accomplishments.
2. Licensees shall not offer, give, solicit, or receive, either directly or indirectly, any commission, or gift, or other valuable consideration in order to secure work, and shall not make any political contribution with the intent to influence the award of a contract by public authority.
3. Licensees shall not attempt to injure, maliciously or falsely, directly or indirectly, the professional reputation, prospects, practice, or employment of other licensees, nor indiscriminately criticize other licensees' work.

## CHEMICAL ENGINEERING

For additional information concerning heat transfer and fluid mechanics, refer to the HEAT TRANSFER, THERMODYNAMICS, MECHANICAL ENGINEERING or FLUID MECHANICS sections.

For additional information concerning chemical process control, refer to the COMPUTERS, MEASUREMENT, AND CONTROLS section.
For additonal information concerning statistical data analysis, refer to the following.

Confidence Intervals
See the subsection in the ENGINEERING PROBABILITY
AND STATISTICS section of this handbook.
Statistical Quality Control
See the subsection in the INDUSTRIAL ENGINEERING section of this handbook.

Linear Regression
See the subsection in the ENGINEERING PROBABILITY
AND STATISTICS section of this handbook.
One-Way Analysis of Variance (ANOVA)
See the subsection in the INDUSTRIAL ENGINEERING section of this handbook.

## SELECTED RULES OF NOMENCLATURE IN ORGANIC CHEMISTRY

## Alcohols

Three systems of nomenclature are in general use. In the first the alkyl group attached to the hydroxyl group is named and the separate word alcohol is added. In the second system the higher alcohols are considered as derivatives of the first member of the series, which is called carbinol. The third method is the modified Geneva system in which (1) the longest carbon chain containing the hydroxyl group determines the surname, (2) the ending $e$ of the corresponding saturated hydrocarbon is replaced by ol, (3) the carbon chain is numbered from the end that gives the hydroxyl group the smaller number, and (4) the side chains are named and their positions indicated by the proper number. Alcohols in general are divided into three classes. In primary alcohols the hydroxyl group is united to a primary carbon atom, that is, a carbon atom united directly to only one other carbon atom. Secondary alcohols have the hydroxyl group united to a secondary carbon atom, that is, one united to two other carbon atoms. Tertiary alcohols have the hydroxyl group united to a tertiary carbon atom, that is, one united to three other carbon atoms.

## Ethers

Ethers are generally designated by naming the alkyl groups and adding the word ether. The group RO is known as an alkoxyl group. Ethers may also be named as alkoxy derivatives of hydrocarbons.

## Carboxylic Acids

The name of each linear carboxylic acid is unique to the number of carbon atoms it contains. 1: (one carbon atom) Formic. 2: Acetic. 3: Propionic. 4: Butyric. 5: Valeric. 6: Caproic. 7: Enanthic. 8: Caprylic. 9: Pelargonic. 10: Capric.

## Aldehydes

The common names of aldehydes are derived from the acids which would be formed on oxidation, that is, the acids having the same number of carbon atoms. In general the ic acid is dropped and aldehyde added.

## Ketones

The common names of ketones are derived from the acid which on pryrolysis would yield the ketone. A second method, especially useful for naming mixed ketones, simply names the alkyl groups and adds the word ketone.
The name is written as three separate words.

## Common Names and Molecular Formulas of Some Industrial (Inorganic and Organic) Chemicals

| Common Name | Chemical Name | Molecular Formula |
| :---: | :---: | :---: |
| Muriatic acid | Hydrochloric acid | HCl |
| Cumene | Isopropyl benzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ |
| Styrene | Vinyl benzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$ |
| - | Hypochlorite ion | $\mathrm{OCl}^{-1}$ |
| - | Chlorite ion | $\mathrm{ClO}_{2}{ }^{-1}$ |
| - | Chlorate ion | $\mathrm{ClO}_{3}{ }^{-1}$ |
| - | Perchlorate ion | $\mathrm{ClO}_{4}{ }^{-1}$ |
| Gypsum | Calcium sulfate | $\mathrm{CaSO}_{4}$ |
| Limestone | Calcium carbonate | $\mathrm{CaCO}_{3}$ |
| Dolomite | Magnesium carbonate | $\mathrm{MgCO}_{3}$ |
| Bauxite | Aluminum oxide | $\mathrm{Al}_{2} \mathrm{O}_{3}$ |
| Anatase | Titanium dioxide | $\mathrm{TiO}_{2}$ |
| Rutile | Titanium dioxide | $\mathrm{TiO}_{2}$ |
| - | Vinyl chloride | $\mathrm{CH}_{2}=\mathrm{CHCl}$ |
| - | Ethylene oxide | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ |
| Pyrite | Ferrous sulfide | FeS |
| Epsom salt | Magnesium sulfate | $\mathrm{MgSO}_{4}$ |
| Hydroquinone | p-Dihydroxy benzene | $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}$ |
| Soda ash | Sodium carbonate | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |
| Salt | Sodium chloride | NaCl |
| Potash | Potassium carbonate | $\mathrm{K}_{2} \mathrm{CO}_{3}$ |
| Baking soda | Sodium bicarbonate | $\mathrm{NaHCO}_{3}$ |
| Lye | Sodium hydroxide | NaOH |
| Caustic soda | Sodium hydroxide | NaOH |
| - | Vinyl alcohol | $\mathrm{CH}_{2}=\mathrm{CHOH}$ |
| Carbolic acid | Phenol | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ |
| Aniline | Aminobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ |
| - | Urea | $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ |
| Toluene | Methyl benzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ |
| Xylene | Dimethyl benzene | $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$ |
| - | Silane | $\mathrm{SiH}_{4}$ |
| - | Ozone | $\mathrm{O}_{3}$ |
| Neopentane | 2,2-Dimethylpropane | $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}$ |
| Magnetite | Ferrous/ferric oxide | $\mathrm{Fe}_{3} \mathrm{O}_{4}$ |
| Quicksilver | Mercury | Hg |
| Heavy water | Deuterium oxide | $\left(\mathrm{H}^{2}\right)_{2} \mathrm{O}$ |
| - | Borane | $\mathrm{BH}_{3}$ |
| Eyewash | Boric acid (solution) | $\mathrm{H}_{3} \mathrm{BO}_{3}$ |
| - | Deuterium | $\mathrm{H}^{2}$ |
| - | Tritium | $\mathrm{H}^{3}$ |
| Laughing gas | Nitrous oxide | $\mathrm{N}_{2} \mathrm{O}$ |
| - | Phosgene | $\mathrm{COCl}_{2}$ |
| Wolfram | Tungsten | W |
| - | Permanganate ion | $\mathrm{MnO}_{4}{ }^{-1}$ |
| - | Dichromate ion | $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ |
| - | Hydronium ion | $\mathrm{H}_{3} \mathrm{O}^{+1}$ |
| Brine | Sodium chloride (solution) | NaCl |
| Battery acid | Sulfuric acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ |

## CHEMICAL THERMODYNAMICS

## Vapor-Liquid Equilibrium

For a multi-component mixture at equilibrium

$$
\hat{f}_{i}^{V}=\hat{f}_{i}^{L}, \text { where }
$$

$\hat{f}_{i}^{V}=$ fugacity of component $i$ in the vapor phase, and
$\hat{f}_{i}^{L}=$ fugacity of component $i$ in the liquid phase.
Fugacities of component $i$ in a mixture are commonly calculated in the following ways:

For a liquid $\quad \hat{f}_{i}^{L}=x_{i} \gamma_{i} f_{i}^{L}$, where
$x_{i}=$ mole fraction of component $i$,
$\gamma_{i}=$ activity coefficient of component $i$, and
$f_{i}^{\mathrm{L}}=$ fugacity of pure liquid component $i$.
For a vapor $\hat{f}_{i}^{V}=y_{i} \hat{\Phi}_{i} P$, where
$\mathrm{y}_{i}=$ mole fraction of component $i$ in the vapor,
$\hat{\Phi}_{i}=$ fugacity coefficient of component $i$ in the vapor, and
$P=$ system pressure.
The activity coefficient $\gamma_{i}$ is a correction for liquid phase non-ideality. Many models have been proposed for $\gamma_{i}$ such as the Van Laar model:

$$
\begin{aligned}
& \ln \gamma_{1}=A_{12}\left(1+\frac{A_{12} x_{1}}{A_{21} x_{2}}\right)^{-2} \\
& \ln \gamma_{2}=A_{21}\left(1+\frac{A_{21} x_{2}}{A_{12} x_{1}}\right)^{-2}, \text { where }
\end{aligned}
$$

$\gamma_{1}=$ activity coefficient of component 1 in a twocomponent system,
$\gamma_{2}=$ activity coefficient of component 2 in a twocomponent system, and
$A_{12}, A_{21}=$ constants, typically fitted from experimental data.
The pure component fugacity is calculated as:

$$
f_{i}^{\mathrm{L}}=\Phi_{i}^{\text {sat }} P_{i}^{\text {sat }} \exp \left\{v_{i}^{L}\left(P-P_{i}^{\text {sat }}\right) /(R T)\right\} \text {, where }
$$

$\Phi_{i}^{\text {sat }}=$ fugacity coefficient of pure saturated $i$,
$P_{i}^{\text {sat }}=$ saturation pressure of pure $i$,
$v_{i}^{L}=$ specific volume of pure liquid $i$, and
$R=$ Ideal Gas Law Constant.

Often at system pressures close to atmospheric:

$$
f_{i}^{\mathrm{L}} \cong P_{i}^{\text {sat }}
$$

The fugacity coefficient $\hat{\Phi}_{i}$ for component $i$ in the vapor is calculated from an equation of state (e.g., Virial). Sometimes it is approximated by a pure component value from a correlation. Often at pressures close to atmospheric, $\hat{\Phi}_{i}=1$. The fugacity coefficient is a correction for vapor phase non-ideality.
For sparingly soluble gases the liquid phase is sometimes represented as

$$
\hat{f}_{i}^{L}=x_{i} k_{i}
$$

where $k_{i}$ is a constant set by experiment (Henry's constant). Sometimes other concentration units are used besides mole fraction with a corresponding change in $k_{i}$.

## Reactive Systems

Conversion: moles reacted/moles fed
Extent: For each species in a reaction, the mole balance may be written:
moles $_{\mathrm{i}, \text { out }}=$ moles $_{\mathrm{i}, \mathrm{in}}+v_{i} \xi$ where
$\xi$ is the extent in moles and $v_{i}$ is the stoichiometric coefficient of the $i^{\text {th }}$ species, sign of which is negative for reactants and positive for products.
Limiting reactant: reactant that would be consumed first if reaction proceeded to completion. Other reactants are excess reactants.
Selectivity: moles of desired product formed $/$ moles of undesired product formed.
Yield: moles of desired product formed $/$ moles that would have been formed if there were no side reactions and limiting reactant had reacted completely.

## Chemical Reaction Equilibrium

For reaction

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \leftrightharpoons \mathrm{cC}+\mathrm{dD} \\
& \Delta G^{\mathrm{o}}=-R T \ln K_{a} \\
& K_{a}=\frac{\left(\hat{a}_{C}^{c}\right)\left(\hat{a}_{D}^{d}\right)}{\left(\hat{a}_{A}^{a}\right)\left(\hat{a}_{B}^{b}\right)}=\prod_{i}\left(\hat{a}_{i}\right)^{v_{i}}, \text { where } \\
\hat{a}_{i}= & \text { activity of component } \mathrm{i}=\frac{\hat{f}_{i}}{f_{i}^{o}} \\
f_{i}^{\mathrm{o}}= & \text { fugacity of pure } i \text { in its standard state } \\
v_{i}= & \text { stoichiometric coefficient of component } i \\
\Delta G^{\mathrm{o}}= & \text { standard Gibbs energy change of reaction } \\
K_{a}= & \text { chemical equilibrium constant }
\end{aligned}
$$

For mixtures of ideal gases:

$$
\begin{aligned}
& f_{i}^{0}=\text { unit pressure, often } 1 \text { bar } \\
& \hat{f_{i}}=y_{i} P=p_{i}
\end{aligned}
$$

where $p_{i}=$ partial pressure of component $i$.
Then $K_{a}=K_{p}=\frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)}=P^{c+d-a-b} \frac{\left(y_{C}^{c}\right)\left(y_{D}^{d}\right)}{\left(y_{A}^{a}\right)\left(y_{B}^{b}\right)}$
For solids $\quad \hat{a}_{i}=1$
For liquids $\quad \hat{a}_{i}=\mathrm{x}_{i} \gamma_{i}$
The effect of temperature on the equilibrium constant is

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta H^{o}}{R T^{2}}
$$

where $\Delta H^{\circ}=$ standard enthalpy change of reaction.

## HEATS OF REACTION

For a chemical reaction the associated energy can be defined in terms of heats of formation of the individual species $\left(\Delta \hat{H}_{f}^{o}\right)$ at the standard state

$$
\left(\Delta \hat{\mathrm{H}}_{\mathrm{r}}^{\mathrm{o}}\right)=\sum_{\text {products }} \mathrm{v}_{i}\left(\Delta \hat{\mathrm{H}}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}-\sum_{\text {reactants }} v_{i}\left(\Delta \hat{\mathrm{H}}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}
$$

The standard state is $25^{\circ} \mathrm{C}$ and 1 bar.
The heat of formation is defined as the enthalpy change associated with the formation of a compound from its atomic species as they normally occur in nature (i.e., $\mathrm{O}_{2(\mathrm{~g})}$, $\mathrm{H}_{2(\mathrm{~g})}, \mathrm{C}_{\text {(solid) })}$, etc.)
The heat of reaction for a combustion process using oxygen is also known as the heat of combustion. The principal products are $\mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\ell)}$.

## CHEMICAL REACTION ENGINEERING

A chemical reaction may be expressed by the general equation

$$
a \mathrm{~A}+b \mathrm{~B} \leftrightarrow c \mathrm{C}+d \mathrm{D} .
$$

The rate of reaction of any component is defined as the moles of that component formed per unit time per unit volume.

$$
\begin{array}{ll}
-r_{A}=-\frac{1}{V} \frac{d N_{A}}{d t} & \text { [negative because A disappears] } \\
-r_{A}=\frac{-d C_{A}}{d t} & \text { if } \mathrm{V} \text { is constant }
\end{array}
$$

The rate of reaction is frequently expressed by

$$
-r_{A}=k f_{r}\left(C_{A}, C_{B}, \ldots .\right), \text { where }
$$

$k=$ reaction rate constant and
$C_{I}=$ concentration of component $I$.

In the conversion of $A$, the fractional conversion $X_{A}$ is defined as the moles of $A$ reacted per mole of $A$ fed.

$$
X_{A}=\left(C_{A 0}-C_{A}\right) / C_{A 0} \quad \text { if } \mathrm{V} \text { is constant }
$$

The Arrhenius equation gives the dependence of $k$ on temperature

$$
\begin{aligned}
& k=A e^{-E_{a} / \bar{R} T}, \text { where } \\
A & =\text { pre-exponential or frequency factor, } \\
E_{a}= & \text { activition energy }(\mathrm{J} / \mathrm{mol}, \mathrm{cal} / \mathrm{mol}), \\
T & =\text { temperature }(\mathrm{K}) \text {, and } \\
\bar{R}= & \text { gas law constant }=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) .
\end{aligned}
$$

For values of rate constant $\left(k_{i}\right)$ at two temperatures $\left(T_{i}\right)$,

$$
E_{a}=\frac{R T_{1} T_{2}}{\left(T_{1}-T_{2}\right)} \ln \left(\frac{k_{1}}{k_{2}}\right)
$$

## Reaction Order

If $-r_{A}=k C_{A}{ }^{x} C_{B}{ }^{y}$
the reaction is $x$ order with respect to reactant $A$ and $y$ order with respect to reactant $B$. The overall order is

$$
n=x+y
$$

## BATCH REACTOR, CONSTANT T AND V

Zero-Order Reaction

| $-r_{A}$ | $=k C_{A}{ }^{o}=k(1)$ |  |
| :--- | :--- | ---: |
| $-d C_{A} / d t$ | $=k$ | or |
| $C_{A}$ | $=C_{A o}-k t$ |  |
| $d X_{A} / d t$ | $=k / C_{A o}$ | or |
| $C_{A o} X_{A}$ | $=k t$ |  |

First-Order Reaction

| $-\mathrm{r}_{A}$ | $=k C_{A}$ |  |
| :--- | :--- | ---: |
| $-d C_{A} / d t$ | $=k C_{A}$ | or |
| $\ln \left(C_{A} / C_{A o}\right)$ | $=-k t$ |  |
| $d X_{A} / d t$ | $=k\left(1-X_{A}\right)$ | or |
| $\ln \left(1-X_{A}\right)$ | $=-k t$ |  |

Second-Order Reaction
$-\mathrm{r}_{A}=k C_{A}{ }^{2}$
$-d C_{A} / d t \quad=k C_{A}{ }^{2}$
or
$1 / C_{A}-1 / C_{A o}=k t$
$d X_{A} / d t \quad=k C_{A o}\left(1-X_{A}\right)^{2}$ or
$X_{A} /\left[C_{A o}\left(1-X_{A}\right)\right]=k t$

## Batch Reactor, General

For a well-mixed, constant-volume, batch reactor

$$
\begin{aligned}
& -\mathrm{r}_{A}=-d C_{A} / d t \\
& t=-C_{A o} \int_{o}^{X_{A}} d X_{A} /\left(-r_{A}\right)
\end{aligned}
$$

If the volume of the reacting mass varies with the conversion (such as a variable-volume batch reactor) according to

$$
\mathrm{V}=\mathrm{V}_{\mathrm{X}_{\mathrm{A}=0}}\left(1+\varepsilon_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right)
$$

(ie., at constant pressure), where

$$
\varepsilon_{A}=\frac{V_{X_{A}=1}-V_{X_{A}=0}}{V_{X_{A}=0}}
$$

then at any time

$$
C_{A}=C_{A o}\left[\frac{1-X_{A}}{1+\varepsilon_{A} X_{A}}\right]
$$

and

$$
t=-C_{A o} \int_{o}^{X_{A}} d X_{A} /\left[\left(1+\varepsilon_{A} X_{A}\right)\left(-r_{A}\right)\right]
$$

For a first order irreversible reaction,

$$
k t=-\ln \left(1-X_{A}\right)=-\ln \left(1-\frac{\Delta V}{\varepsilon_{A} V_{X A=O}}\right)
$$

## FLOW REACTORS, STEADY STATE

Space-time $\tau$ is defined as the reactor volume divided by the inlet volumetric feed rate. Space-velocity $S V$ is the reciprocal of space-time, $S V=1 / \tau$.

## Plug-Flow Reactor (PFR)

$$
\tau=\frac{C_{A o} V_{P F R}}{F_{A o}}=C_{A o} J_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)} \text {, where }
$$

$\mathrm{F}_{\mathrm{Ao}}=$ moles of $A$ fed per unit time.
Continuous Stirred Tank Reactor (CSTR)
For a constant volume, well-mixed, CSTR

$$
\frac{\tau}{C_{\mathrm{Ao}}}=\frac{V_{\mathrm{CSTR}}}{F_{\mathrm{Ao}}}=\frac{X_{\mathrm{A}}}{-r_{\mathrm{A}}} \text {, where }
$$

$-\mathrm{r}_{A}$ is evaluated at exit stream conditions.

## Continuous Stirred Tank Reactors in Series

With a first-order reaction $A \rightarrow R$, no change in volume.

$$
\begin{aligned}
\tau_{N \text {-reactors }} & =N \tau_{\text {individual }} \\
& =\frac{N}{k}\left[\left(\frac{C_{A o}}{C_{A N}}\right)^{1 / N}-1\right], \text { where }
\end{aligned}
$$

$N=$ number of CSTRs (equal volume) in series, and
$C_{A N}=$ concentration of $A$ leaving the $N$ th CSTR.

## MASS TRANSFER

## Diffusion

## Molecular Diffusion

Gas: $\frac{N_{A}}{A}=\frac{p_{A}}{P}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-\frac{D_{m}}{R T} \frac{\partial p_{A}}{\partial z}$
Liquid: $\frac{N_{A}}{A}=x_{A}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-C D_{m} \frac{\partial x_{A}}{\partial z}$
in which $\left(p_{B}\right)_{l m}$ is the log mean of $p_{B 2}$ and $p_{B 1}$,
Unidirectional Diffusion of a Gas A Through a Second Stagnant Gas B ( $\mathrm{N}_{\underline{\mathrm{b}}}=0$ )

$$
\frac{N_{A}}{A}=\frac{D_{m} P}{\bar{R} T\left(p_{B}\right)_{\operatorname{lm}}} \times \frac{\left(p_{A 2}-p_{A 1}\right)}{z_{2}-z_{1}}
$$

in which $\left(p_{B}\right)_{\text {lm }}$ is the log mean of $p_{B 2}$ and $p_{B 1}$,
$N_{i}=$ diffusive flow (mole/time) of component $i$ through area $A$, in $z$ direction, and
$D_{m}=$ mass diffusivity.

## EQUIMOLAR COUNTER-DIFFUSION (GASES) <br> $\left(N_{B}=-N_{A}\right)$

$$
\begin{aligned}
& N_{A} / A=D_{m} /(\bar{R} T) \times\left[\left(p_{A 1}-p_{A 2}\right) /(\Delta z)\right] \\
& N_{A} / A=D_{m}\left(C_{A 1}-C_{A 2}\right) / \Delta z
\end{aligned}
$$

## CONVECTION

Two-Film Theory (for Equimolar Counter-Diffusion)

$$
\begin{aligned}
N_{A} / A & =k_{G}^{\prime}\left(p_{A G}-p_{A i}\right) \\
& =k_{L}^{\prime}\left(C_{A i}-C_{A L}\right) \\
& =K_{G}^{\prime}\left(p_{A G}-p_{A}{ }^{*}\right) \\
& =K_{L}^{\prime}\left(C_{A}^{*}-C_{A L}\right)
\end{aligned}
$$

where $p_{A}{ }^{*}$ is partial pressure in equilibrium with $C_{A L}$, and
$C_{A}{ }^{*}=$ concentration in equilibrium with $p_{A G}$.

## Overall Coefficients

$$
\begin{aligned}
& 1 / K_{G}^{\prime}=1 / k_{G}^{\prime}+H / k_{L}^{\prime} \\
& 1 / K_{L}^{\prime}=1 / H k_{G}^{\prime}+1 / k_{L}^{\prime}
\end{aligned}
$$

## Dimensionless Group Equation (Sherwood)

For the turbulent flow inside a tube the Sherwood number

$$
\left(\frac{k_{m} D}{D_{m}}\right) \text { is given by: }\left(\frac{k_{m} D}{D_{m}}\right)=0.023\left(\frac{D V \rho}{\mu}\right)^{0.8}\left(\frac{\mu}{\rho D_{m}}\right)^{1 / 3}
$$

where,
$D=$ inside diameter,
$D_{m}=$ diffusion coefficient,
$V=$ average velocity in the tube,
$\rho=$ fluid density, and
$\mu=$ fluid viscosity,
$\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient.

## Distillation

Definitions:
$\alpha=$ relative volatility,
$B=$ molar bottoms-product rate,
$D=$ molar overhead-product rate,
$F=$ molar feed rate,
$L=$ molar liquid downflow rate,
$R_{D}=$ ratio of reflux to overhead product,
$V=$ molar vapor upflow rate,
$W=$ total moles in still pot,
$x=$ mole fraction of the more volatile component in the liquid phase, and
$y=$
mole fraction of the more volatile component in the vapor phase.
Subscripts:
B = bottoms product,
$D=$ overhead product,
$F=$ feed,
$m=$ any plate in stripping section of column,
$m+1=$ plate below plate $m$,
$n \quad=$ any plate in rectifying section of column,
$n+1=$ plate below plate $n$, and
$o \quad=$ original charge in still pot.

## Flash (or equilibrium) Distillation

Component material balance:

$$
F z_{F}=y V+x L
$$

Overall material balance:

$$
F=V+L
$$

## Differential (Simple or Rayleigh) Distillation

$$
\ln \left(\frac{W}{W_{o}}\right)=\int_{x_{o}}^{x} \frac{d x}{y-x}
$$

When the relative volatility $\alpha$ is constant,

$$
y=\alpha x /[1+(\alpha-1) x]
$$

can be substituted to give

$$
\ln \left(\frac{W}{W_{o}}\right)=\frac{1}{(\alpha-1)} \ln \left[\frac{x\left(1-x_{o}\right)}{x_{o}(1-x)}\right]+\ln \left[\frac{1-x_{o}}{1-x}\right]
$$

For binary system following Raoult's Law
$\alpha=(y / x)_{a} /(y / x)_{b}=p_{a} / p_{b}$, where
$p_{i}=$ partial pressure of component $i$.

## Continuous Distillation (binary system)

Constant molal overflow is assumed (trays counted downward)

## OVERALL MATERIAL BALANCES

## Total Material:

$$
F=D+B
$$

## Component $A$ :

$$
F z_{F}=D x_{D}+B x_{B}
$$

## OPERATING LINES

## Rectifying Section

Total Material:

$$
V_{n+1}=L_{n}+D
$$

Component $A$ :

$$
\begin{aligned}
& V_{n+1} y_{n+1}=L_{n} x_{n}+D x_{D} \\
& y_{n+1}=\left[L_{n} /\left(L_{n}+D\right)\right] x_{n}+D x_{D} /\left(L_{n}+D\right)
\end{aligned}
$$

## Stripping Section

Total Material:

$$
L_{m}=V_{m+1}+B
$$

Component $A$ :

$$
\begin{aligned}
& L_{m} x_{m}=V_{m+1} y_{m+1}+B x_{B} \\
& y_{m+1}=\left[L_{m} /\left(L_{m}-B\right)\right] x_{m}-B x_{B} /\left(L_{m}-B\right)
\end{aligned}
$$

## Reflux Ratio

Ratio of reflux to overhead product

$$
R_{D}=L_{R} / D=\left(V_{R}-D\right) / D
$$

Minimum reflux ratio is defined as that value which results in an infinite number of contact stages. For a binary system the equation of the operating line is

$$
y=\frac{R_{\min }}{R_{\min }+1} x+\frac{x_{D}}{R_{\min }+1}
$$

Feed Condition Line

$$
\text { slope }=q /(q-1) \text {, where }
$$

$$
q=\frac{\text { heat to convert one mol of feed to saturated vapor }}{\text { molar heat of vaporization }}
$$

Murphree Plate Efficiency
$E_{M E}=\left(y_{n}-y_{n+1}\right) /\left(y_{n}^{*}-y_{n+1}\right)$, where
$y=$ concentration of vapor above plate $n$,
$y_{n+1}=$ concentration of vapor entering from plate below $n$, and
$y_{n}^{*}=$ concentration of vapor in equilibrium with liquid leaving plate $n$.
A similar expression can be written for the stripping section by replacing $n$ with $m$.


Other Mass Transfer Operations
For additional information concerning solid/fluid separators, membrane separations, and air stripping, refer to the ENVIRONMENTAL ENGINEERING section.

## COST ESTIMATION

Cost Indexes

| Cost Indexes as Annual Averages |  |  |
| :---: | :---: | :---: |
| Year | Marshall and Swift installed- <br> equipment index for the <br> process industry, <br> 1926 $=100$ | Chemical <br> engineering plant <br> cost index <br> 1957- $1959=100$ |
| 1950 | 167 | 79 |
| 1960 | 237 | 102 |
| 1970 | 301 | 126 |
| 1980 | 675 | 261 |
| 1990 | 924 | 356 |
| 2000 | 1,108 | 394 |


| Component | Range |
| :---: | :---: |
| Direct costs |  |
| Purchased equipment-delivered (including fabricated equipment and process machinery such as pumps and compressors) | 100 |
| Purchased-equipment installation | 39-47 |
| Instrumentation and controls (installed) | 9-18 |
| Piping (installed) | 16-66 |
| Electrical (installed) | 10-11 |
| Buildings (including services) | 18-29 |
| Yard improvements | 10-13 |
| Service facilities (installed) | 40-70 |
| Land (if purchase is required) | 6 |
| Total direct plant cost | 264-346 |
| Indirect costs |  |
| Engineering and supervision | 32-33 |
| Construction expenses | 34-41 |
| Total direct and indirect plant costs | 336-420 |
| Contractor's fee (about 5\% of direct and indirect plant costs) | 17-21 |
| Contingency (about $10 \%$ of direct and indirect plant costs) | 36-42 |
| Fixed-capital investment | 387-483 |
| Working capital (about $15 \%$ of total capital investment) | 68-86 |
| Total capital investment | 455-569 |

## Scaling of Equipment Costs

The cost of Unit A at one capacity related to the cost of a similar Unit B with X times the capacity of Unit A is approximately $\mathrm{X}^{\mathrm{n}}$ times the cost of Unit B.
Cost of Unit $A=$ cost of Unit B $\left(\frac{\text { capacity of Unit A }}{\text { capacity of Unit B }}\right)^{n}$

## TYPICAL EXPONENTS (n) FOR EQUIPMENT COST VS. CAPACITY

| Equipment | Size range | Exponent |
| :--- | :--- | :--- |
| Dryer, drum, single vacuum | $10-10^{2} \mathrm{ft}^{2}$ | 0.76 |
| Dryer, drum, single atmospheric | $10-10^{2} \mathrm{ft}^{2}$ | 0.40 |
| Fan, centrifugal | $10^{3}-10^{4} \mathrm{ft}^{3} / \mathrm{min}^{4}$ | 0.44 |
| Fan, centrifugal | $2 \times 10^{4}-7 \times 10^{4} \mathrm{ft}^{3} / \mathrm{min}$ | 1.17 |
| Heat exchanger, shell and tube, floating head, c.s. | $100-400 \mathrm{ft}^{2}$ | 0.60 |
| Heat exchanger, shell and tube, fixed sheet, c.s. <br> Motor, squirrel cage, induction, 440 volts, <br> explosion proof <br> Motor, squirrel cage, induction, 440 volts, <br> explosion proof <br> Tray, bubble cup, c.s. | $5-20 \mathrm{hp}$ | 0.44 |
| Tray, sieve, c.s. | $20-200 \mathrm{hp}$ | 0.69 |

## CHEMICAL PROCESS SAFETY

## Threshold Limit Value (TLV)

TLV is the lowest dose (ppm by volume in the atmosphere) the body is able to detoxify without any detectable effects. Examples are:

| Compound |  |
| :--- | ---: |
| Ammonia |  |
| Chlorine | 25 |
| Ethyl Chloride |  |
| Ethyl Ether | 1,000 |
|  | 400 |

## Flammability

LFL = lower flammability limit (volume \% in air)
UFL $=$ upper flammability limit (volume $\%$ in air)
A vapor-air mixture will only ignite and burn over the range of concentrations between LFL and UFL. Examples are:

| Compound | LFL | UFL |
| :---: | :---: | :---: |
| Ethyl alcohol | 3.3 | 19 |
| Ethyl ether | 1.9 | 36.0 |
| Ethylene | 2.7 | 36.0 |
| Methane | 5 | 15 |
| Propane | 2.1 | 9.5 |

## Concentrations of Vaporized Liquids

Vaporization Rate ( $\mathrm{Q}_{\mathrm{m}}$, mass/time) from a Liquid Surface

$$
\mathrm{Q}_{\mathrm{m}}=\left[\mathrm{MKA}_{\mathrm{S}} \mathrm{P}^{\mathrm{sat}} /\left(\mathrm{R}_{\mathrm{g}} \mathrm{~T}_{\mathrm{L}}\right)\right]
$$

$\mathrm{M}=$ molecular weight of volatile substance
$\mathrm{K}=$ mass transfer coefficient
$\mathrm{A}_{\mathrm{S}}=$ area of liquid surface
$\mathrm{P}^{\text {sat }}=$ saturation vapor pressure of the pure liquid at $\mathrm{T}_{\mathrm{L}}$
$\mathrm{R}_{\mathrm{g}}=$ ideal gas constant
$\mathrm{T}_{\mathrm{L}}=$ absolute temperature of the liquid

Mass Flow Rate of Liquid from a Hole in the Wall of a Process Unit

$$
\mathrm{Q}_{\mathrm{m}}=\mathrm{A}_{\mathrm{H}} \mathrm{C}_{\mathrm{o}}\left(2 \rho \mathrm{~g}_{\mathrm{c}} \mathrm{P}_{\mathrm{g}}\right)^{1 / 2}
$$

$\mathrm{A}_{\mathrm{H}}=$ area of hole
$\mathrm{C}_{\mathrm{o}}=$ discharge coefficient
$\rho=$ density of the liquid
$\mathrm{g}_{\mathrm{c}}=$ gravitational constant
$\mathrm{P}_{\mathrm{g}}=$ gauge pressure within the process unit

Concentration ( $\mathrm{C}_{\mathrm{ppm}}$ ) of Vaporized Liquid in
Ventilated Space

$$
\mathrm{C}_{\mathrm{ppm}}=\left[\mathrm{Q}_{\mathrm{m}} \mathrm{R}_{\mathrm{g}} \mathrm{~T} \times 10^{6} /\left(\mathrm{k} \mathrm{Q}_{\mathrm{V}} \mathrm{PM}\right)\right]
$$

$\mathrm{T}=$ absolute ambient temperature
$\mathrm{k}=$ nonideal mixing factor
$\mathrm{Q}_{\mathrm{V}}=$ ventilation rate
$\mathrm{P}=$ absolute ambient pressure
Concentration in the Atmosphere
See "Atmospheric Dispersion Modeling" under
AIR POLLUTION in the ENVIRONMENTAL ENGINEERING section.
Sweep-Through Concentration Change in a Vessel
$\mathrm{Q}_{\mathrm{V}} \mathrm{t}=\mathrm{V} \ln \left[\left(\mathrm{C}_{1}-\mathrm{C}_{\mathrm{o}}\right) /\left(\mathrm{C}_{2}-\mathrm{C}_{\mathrm{o}}\right)\right]$
$\mathrm{Q}_{\mathrm{V}}=$ volumetric flow rate
$\mathrm{t}=$ time
$\mathrm{V}=$ vessel volume
$\mathrm{C}_{\mathrm{o}}=$ inlet concentration
$\mathrm{C}_{1}=$ initial concentration
$\mathrm{C}_{2}=$ final concentration

## CIVIL ENGINEERING

## GEOTECHNICAL

## Definitions

$c=$ cohesion
$q_{u}=$ unconfined compressive strength $=2 c$
$D_{r}=$ relative density (\%)
$=\left[\left(e_{\max }-\mathrm{e}\right) /\left(e_{\max }-e_{\min }\right)\right] \times 100$
$=\left[\left(1 / \gamma_{\min }-1 / \gamma\right) /\left(1 / \gamma_{\min }-1 / \gamma_{\max }\right)\right] \times 100$
$e_{\max }=$ maximum void ratio
$e_{\text {min }}=$ minimum void ratio
$\gamma_{\max }=$ maximum dry unit weight
$\gamma_{\text {min }}=$ minimum dry unit weight
$\tau=$ general shear strength $=c+\sigma \tan \phi$
$\phi=$ angle of internal friction
$\sigma=$ normal stress $=P / A$
$P=$ force
$A=$ area
$\sigma^{\prime}=$ effective stress $=\sigma-u$
$\sigma=$ total normal stress
$u=$ pore water pressure
$C_{c}=$ coefficient of curvature of gradation
$=\left(D_{30}\right)^{2} /\left[\left(D_{60}\right)\left(D_{10}\right)\right]$
$D_{10}, D_{30}, D_{60}=$ particle diameters corresponding to $10 \%$ $30 \%$, and $60 \%$ finer on grain-size curve
$C_{u}=$ uniformity coefficient $=D_{60} / D_{10}$
$e=$ void ratio $=V_{v} / V_{s}$
$V_{v}=$ volume of voids
$V_{s}=$ volume of solids
$w=$ water content $(\%)=\left(W_{w} / W_{s}\right) \times 100$
$W_{w}=$ weight of water
$W_{s}=$ weight of solids
$W_{t}=$ total weight
$G_{s}=$ specific gravity of solids $=W_{s} /\left(V_{s} \gamma_{w}\right)$
$\gamma_{w}=$ unit weight of water $\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right.$ or $\left.1,000 \mathrm{~kg} / \mathrm{m}^{3}\right)$
$P I=$ plasticity index $=L L-P L$
$L L=$ liquid limit
$P L=$ plastic limit
$S=$ degree of saturation $(\%)=\left(V_{w} / V_{v}\right) \times 100$
$V_{w}=$ volume of water
$V_{v}=$ volume of voids
$V_{t}=$ total volume
$\gamma_{t}=$ total unit weight of soil $=W_{t} / V_{t}$
$\gamma_{d}=$ dry unit weight of soil $=W_{s} / V_{t}$
$=G_{s} \gamma_{w} /(1+e)=\gamma /(1+w)$
$G_{s} w=S e$
$\gamma_{s}=$ unit weight of solids $=W_{s} / V_{s}$
$n=$ porosity $=V_{v} / V_{t}=e /(1+e)$

```
\(q_{\text {ult }}=\) ultimate bearing capacity
        \(=c N_{c}+\gamma D_{f} N_{q}+0.5 \gamma B N_{\gamma}\)
\(N_{c}, N_{q}\), and \(N_{\gamma}=\) bearing capacity factors
\(B \quad=\) width of strip footing
\(D_{f} \quad=\) depth of footing below surface of ground
\(k=\) coefficient of permeability \(=\) hydraulic conductivity
    \(=Q /(i A)\) (from Darcy's equation)
\(Q=\) discharge flow rate
\(i=\) hydraulic gradient \(=d H / d x\)
\(A=\) cross-sectional area
\(Q=k H\left(N_{f} / N_{d}\right)\) (for flow nets, \(Q\) per unit width)
\(H=\) total hydraulic head (potential)
\(N_{f}=\) number of flow channels
\(N_{d}=\) number of potential drops
\(C_{c}=\) compression index \(=\Delta e / \Delta \log p\)
    \(=\left(e_{1}-e_{2}\right) /\left(\log p_{2}-\log p_{1}\right)\)
    \(=0.009(L L-10)\) for normally consolidated clay
\(e_{1}\) and \(e_{2}=\) void ratios
\(p_{1}\) and \(p_{2}=\) pressures
\(\Delta H=\) settlement \(=H\left[C_{c} /\left(1+e_{0}\right)\right] \log \left[\left(\sigma_{0}+\Delta p\right) / \sigma_{0}\right]\)
    \(=H \Delta e /\left(1+e_{0}\right)\)
\(H=\) thickness of soil layer
\(\Delta e, \Delta p=\) change in void ratio, change in pressure
\(e_{0}, \sigma_{0}=\) initial void ratio, initial pressure
\(c_{v}=\) coefficient of consolidation \(=T H_{d r}{ }^{2} / t\)
\(T=\) time factor
\(t=\) consolidation time
\(H_{d r}=\) length of drainage path
\(K_{a}=\) Rankine active lateral pressure coefficient
    \(=\tan ^{2}(45-\phi / 2)\)
\(K_{p}=\) Rankine passive lateral pressure coefficient
    \(=\tan ^{2}(45+\phi / 2)\)
\(P_{a}=\) active resultant force \(=0.5 \gamma H^{2} K_{a}\)
\(H=\) height of wall
FS \(=\) factor of safety against sliding (slope stability)
    \(=\frac{c L+W \cos \alpha \tan \phi}{W \sin \alpha}\)
\(L=\) length of slip plane
\(\alpha=\) slope of slip plane with horizontal
\(\phi=\) angle of internal friction
\(W=\) total weight of soil above slip plane
```

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM DESIGNATION D-2487)

| SOIL CLASSIFICATION CHART |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ${ }^{\text {A }}$ |  |  |  | Soil Classification |  |
|  |  |  |  | Group Symbol | Group Name ${ }^{\text {B }}$ |
| COARSE- <br> GRAINED SOILS <br> More than 50\% <br> retained on No. <br> 200 sieve | Gravels <br> More than $50 \%$ of coarse fraction retained on No. 4 sieve Sands $50 \%$ or more of coarse fraction passes No. 4 sieve | Cleans Gravels Less than 5\% fines ${ }^{\text {C }}$ | $\frac{C_{u} \geq 4 \text { and } 1 \leq C_{C} \leq 3^{E}}{C_{u}<4 \text { and/or } C_{C}>3^{E}}$ | GW | Well-graded gravel ${ }^{\text {F }}$ |
|  |  |  |  | GP | Poorly graded gravel ${ }^{\text {F }}$ |
|  |  | Gravels with Fines More than $12 \%$ fines ${ }^{\text {C }}$ | Fines classify as ML or MH | GM | Silty gravelF.G,H |
|  |  |  | Fines classify as CL or CH | GC | Clayey gravelf,G,H |
|  |  | Cleans Sands Less than 5\% fines ${ }^{\text {D }}$ | $\mathrm{C}_{\mathrm{u}} \geq 6$ and $1 \leq \mathrm{C}_{\mathrm{C}} \leq 3 \mathrm{E}$ | SW | Well-graded sand ' |
|  |  |  | $\mathrm{C}_{\mathrm{u}}<6$ and/or $1>\mathrm{C}_{\mathrm{C}}>3 \mathrm{E}$ | SP | Poorly graded sand ${ }^{1}$ |
|  |  | Sands with Fines More than $12 \%$ fines ${ }^{\text {D }}$ | Fines classify as ML or MH | SM | Silty sand ${ }^{\text {G,H,I }}$ |
|  |  |  | Fines classify as CL or CH | SC | Clayey sand $\mathrm{G}, \mathrm{H}, \mathrm{I}^{\text {a }}$ |
| FINE-GRAINED SOILS $50 \%$ or more pass the No. 200 sieve | Silts and Clays Liquid limit less than 50 | inorganic | $\mathrm{Pl}>7$ and plots on or above " A " line ${ }^{J}$ | CL | Lean clay ${ }^{\text {K,L,M }}$ |
|  |  |  | $\mathrm{PI}<4$ or plots below "A" line ${ }^{\mathrm{J}}$ | ML | Silt K,L,M |
|  |  | organic | Liquid Limit - oven dried $<0.75$ | OL | Organic clay K,L,M,N |
|  |  |  | Liquid Limit - not dried $<0.75$ |  | Organic silt K,L,M,O |
|  | Silts and Clays | inorganic | Pl plots on or above "A" line | CH | Fat clay K,L,M |
|  | Liquid limit 50 or |  | Pl plots below "A" line | MH | Elastic silt K,L,M |
|  | more | organic | Liquid Limit - oven dried $<0.75$ | OH | Organic clay K,L,M, P |
|  |  |  | Liquid Limit - not dried $<0.75$ |  | Organic silt K,L,M,Q |
| HIGHLY ORGANIC SOILS |  | Primarily organic matter, dark in color, and organic odor |  | PT | Peat |
| ${ }^{A}$ Based on the materia mm ) sieve. <br> ${ }^{B}$ If field sample conta or both, add "with co both" to group name <br> Gravels with 5 to 12 symbols: <br> GW-GM well-graded GW-GC well-graded GP-GM poorly grad GP-GC poorly grad <br> D Sands with 5 to 12\% symbols: <br> SW-SM well-graded SW-SC well-graded | passing the 3 -in. (75- <br> ed cobbles or boulders bles or boulders, or <br> fines require dual <br> gravel with silt gravel with clay gravel with silt gravel with clay fines require dual <br> and with silt and with clay | SP-SM poorly graded SP-SC poorly graded ${ }^{\mathrm{E}} C_{U}=D_{60} / D_{10}$ <br> ${ }^{F}$ If soil contains $\geq 15 \%$ to group name. <br> ${ }^{6}$ If fines classify as CL GC-GM, or SC-SM. <br> ${ }^{H}$ If fines are organic, add to group name. <br> ' If soil contains $\geq 15 \%$ gravel" to group nam <br> ${ }^{J}$ If Atterberg limits plot a CL-ML, silty clay. |  | tains 15 to <br> d" or "with ant. <br> tains $\geq 30$ <br> antly sand <br> tains $\geq 30$ <br> antly grav me. <br> d plots on <br> plots below <br> n or above <br> elow "A" lin | \% plus No. 200, add <br> vel, "whichever is <br> plus No. 200, d "sandy" to group <br> plus No. 200, dd "gravelly" to <br> bove " A " line. " line. " line. |

Notes:
(1) The A-Line separates clay classifications and silt classifications.
(2) The U-Line represents an approximate upper limit of LL and PL combinations for natural soils (empirically determined).



FLOW CHART FOR CLASSIFYING COARSE-GRAINED SOILS (MORE THAN 50 PERCENT RETAINED ON NO. 200 SIEVE)

## STRUCTURAL ANALYSIS

Influence Lines
An influence diagram shows the variation of a function (reaction, shear, bending moment) as a single unit load moves across the structure. An influence line is used to (1) determine the position of load where a maximum quantity will occur and (2) determine the maximum value of the quantity.

## Deflection of Trusses

Principle of virtual work as applied to trusses

$$
\begin{aligned}
\Delta & =\Sigma f_{Q} \delta L \\
\Delta & =\text { deflection at point of interest } \\
f_{Q} & =\text { member force due to virtual unit load applied at } \\
& \text { the point of interest } \\
\delta L & =\text { change in member length } \\
& =\alpha L(\Delta T) \text { for temperature } \\
& =F_{p} L / A E \text { for external load }
\end{aligned}
$$

$\alpha=$ coefficient of thermal expansion
$L=$ member length
$F p=$ member force due to external load
$A=$ cross-sectional area of member
$E=$ modulus of elasticity
$\Delta T=T-T_{O} ; T=$ final temperature, and $T_{O}=$ initial temperature

## Deflection of Frames

The principle of virtual work as applied to frames:

$$
\Delta=\Sigma\left\{\int_{O}^{L} \frac{m M}{E I} d x\right\}
$$

$m=$ bending moment as a function of $x$ due to virtual unit load applied at the point of interest
$M=$ bending moment as a function of $x$ due to external loads

## BEAM FIXED-END MOMENT FORMULAS

$$
\begin{array}{ll}
\text { FEM }_{A B}=\frac{\mathrm{Pab}^{2}}{\mathrm{~L}^{2}} & \text { FEM }_{\mathrm{BA}}=\frac{\mathrm{Pa}^{2} \mathrm{~b}}{\mathrm{~L}^{2}} \\
\mathrm{FEM}_{\mathrm{AB}}=\frac{\mathrm{w}_{\mathrm{o}} \mathrm{~L}^{2}}{12} & \mathrm{FEM}_{\mathrm{BA}}=\frac{\mathrm{w}_{\mathrm{o}} \mathrm{~L}^{2}}{12} \\
\mathrm{FEM}_{\mathrm{AB}}=\frac{\mathrm{w}_{\mathrm{o}} \mathrm{~L}^{2}}{30} & \mathrm{FEM}_{\mathrm{BA}}=\frac{\mathrm{w}_{\mathrm{o}} \mathrm{~L}^{2}}{20}
\end{array}
$$

## Live Load Reduction

The live load applied to a structure member can be reduced as the loaded area supported by the member is increased. A typical reduction model (as used in ASCE 7 and in building codes) for a column supporting two or more floors is:

$$
L_{\text {reduced }}=L_{\text {nominal }}\left(0.25+\frac{15}{\sqrt{k_{L L} A_{T}}}\right) \geq 0.4 L_{\text {nominal }}
$$

$$
\begin{array}{ll}
\text { Columns: } & k_{L L}=4 \\
\text { Beams: } & k_{L L}=2
\end{array}
$$

where $L_{\text {nominal }}$ is the nominal live load (as given in a load standard or building code), $A_{T}$ is the cumulative floor tributary area supported by the member, and $k_{L L}$ is the ratio of the area of influence to the tributary area.

## REINFORCED CONCRETE DESIGN ACI 318-02

US Customary units

## Definitions

$a=$ depth of equivalent rectangular stress block, in
$A_{g}=$ gross area of column, in ${ }^{2}$
$A_{s}=$ area of tension reinforcement, in ${ }^{2}$
$A_{s}{ }^{\prime}=$ area of compression reinforcement, in ${ }^{2}$
$A_{s t}=$ total area of longitudinal reinforcement, in ${ }^{2}$
$A_{v}=$ area of shear reinforcement within a distance $s$, in
$b=$ width of compression face of member, in
$b_{e}=$ effective compression flange width, in
$b_{w}=$ web width, in
$\beta_{l}=$ ratio of depth of rectangular stress block, $a$, to depth to neutral axis, $c$

$$
=0.85 \geq 0.85-0.05\left(\frac{f_{c}^{\prime}-4,000}{1,000}\right) \geq 0.65
$$

$c=$ distance from extreme compression fiber to neutral axis, in
$d=$ distance from extreme compression fiber to centroid of nonprestressed tension reinforcement, in
$d_{t}=$ distance from extreme tension fiber to extreme tension steel, in
$E_{c}=$ modulus of elasticity $=33 w_{c}{ }^{1.5} \sqrt{f_{c}{ }^{\prime}}$, psi
$\varepsilon_{t}=$ net tensile strain in extreme tension steel at nominal strength
$f_{c}^{\prime}=$ compressive strength of concrete, psi
$f_{y}=$ yield strength of steel reinforcement, psi
$h_{f}=$ T-beam flange thickness, in
$M_{c}=$ factored column moment, including slenderness effect, in-lb
$M_{n}=$ nominal moment strength at section, in-lb
$\phi M_{n}=$ design moment strength at section, in- lb
$M_{u}=$ factored moment at section, in- lb
$P_{n}=$ nominal axial load strength at given eccentricity, lb
$\phi P_{n}=$ design axial load strength at given eccentricity, lb
$P_{u}=$ factored axial force at section, lb
$\rho_{g}=$ ratio of total reinforcement area to cross-sectional area of column $=\mathrm{A}_{\mathrm{st}} / \mathrm{A}_{\mathrm{g}}$
$s=$ spacing of shear ties measured along longitudinal axis of member, in
$V_{c}=$ nominal shear strength provided by concrete, lb
$V_{n}=$ nominal shear strength at section, lb
$\phi V_{n}=$ design shear strength at section, lb
$V_{s}=$ nominal shear strength provided by reinforcement, lb
$V_{u}=$ factored shear force at section, lb

## ASTM STANDARD REINFORCING BARS

| BAR SIZE | DIAMETER, IN | AREA, IN ${ }^{2}$ | WEIGHT, LB/FT |
| :---: | :---: | :---: | :---: |
| $\# 3$ | 0.375 | 0.11 | 0.376 |
| $\# 4$ | 0.500 | 0.20 | 0.668 |
| $\# 5$ | 0.625 | 0.31 | 1.043 |
| $\# 6$ | 0.750 | 0.44 | 1.502 |
| $\# 7$ | 0.875 | 0.60 | 2.044 |
| $\# 8$ | 1.000 | 0.79 | 2.670 |
| $\# 9$ | 1.128 | 1.00 | 3.400 |
| $\# 10$ | 1.270 | 1.27 | 4.303 |
| $\# 11$ | 1.410 | 1.56 | 5.313 |
| $\# 14$ | 1.693 | 2.25 | 7.650 |
| $\# 18$ | 2.257 | 4.00 | 13.60 |
|  |  |  |  |

## LOAD FACTORS FOR REQUIRED STRENGTH

$$
\begin{aligned}
& U=1.4 D \\
& U=1.2 D+1.6 L
\end{aligned}
$$

## SELECTED ACI MOMENT COEFFICIENTS

Approximate moments in continuous beams of three or more spans, provided:

1. Span lengths approximately equal (length of longer adjacent span within $20 \%$ of shorter)
2. Uniformly distributed load
3. Live load not more than three times dead load

$$
\begin{aligned}
& M_{u}=\text { coefficient } * w_{u} * L_{n}{ }^{2} \\
& w_{u}=\text { factored load per unit beam length } \\
& L_{n}=\text { clear span for positive moment; average } \\
& \\
& \\
& \\
& \text { adjacent clear spans for negative moment }
\end{aligned}
$$

Column


Spandrel


## End span



## RESISTANCE FACTORS,

Tension-controlled sections $\left(\varepsilon_{\mathrm{t}} \geq 0.005\right)$ : $\quad \phi=0.9$
Compression-controlled sections ( $\varepsilon_{\mathrm{t}} \leq 0.002$ ):
Members with spiral reinforcement $\quad \phi=0.70$
Members with tied reinforcement $\quad \phi=0.65$
Transition sections $\left(0.002<\varepsilon_{\mathrm{t}}<0.005\right)$ :
Members w/ spiral reinforcement $\quad \phi=0.57+67 \varepsilon_{\mathrm{t}}$
Members w/ tied reinforcement $\quad \phi=0.48+83 \varepsilon_{\mathrm{t}}$
Shear and torsion
Bearing on concrete
$\phi=0.75$
$\phi=0.65$

BEAMS - FLEXURE: $\phi M_{n} \geq M_{u}$

## For all beams

Net tensile strain: $a=\beta_{1} c$

$$
\varepsilon_{t}=\frac{0.003\left(d_{t}-c\right)}{c}=\frac{0.003\left(\beta_{1} d_{t}-a\right)}{a}
$$

Design moment strength: $\phi M_{n}$

$$
\text { where: } \phi \quad=0.9\left[\varepsilon_{t} \geq 0.005\right]
$$

$$
\phi \quad=0.48+83 \varepsilon_{t}\left[0.004 \leq \varepsilon_{t}<0.005\right]
$$

Reinforcement limits:

$$
\begin{aligned}
& A_{S, \max } \varepsilon_{t}=0.004 @ \mathrm{M}_{\mathrm{n}} \\
& A_{S, \min }=\operatorname{larger}\left\{\frac{3 \sqrt{f_{c}^{\prime}{ }_{c}{ }_{w}{ }^{d}}}{f_{y}} \text { or } \frac{200{ }_{w}{ }^{d}}{f_{y}}\right.
\end{aligned}
$$

$A_{s, \text { min }}$ limits need not be applied if $A_{s}\left(\right.$ provided $\geq 1.33 A_{s}$ (required)

## Singly-reinforced beams

$$
\begin{aligned}
& A_{s, \max }=\frac{0.85 f_{c}^{\prime} \beta_{1} b}{f_{y}}\left(\frac{3 d_{t}}{7}\right) \\
& a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \\
& M_{n}=0.85 f_{c}^{\prime} a b\left(d-\frac{a}{2}\right)=A_{s} f_{y}\left(d-\frac{a}{2}\right)
\end{aligned}
$$

## Doubly-reinforced beams

Compression steel yields if:

$$
A_{s}-A_{s}^{\prime} \geq \frac{0.85 \beta_{1} f_{c}^{\prime} d^{\prime} b}{f_{y}}\left(\frac{87,000}{87,000-f_{y}}\right)
$$

If compression steel yields:

$$
\begin{aligned}
& A_{s, \max }=\frac{0.85 f_{c}^{\prime} \beta_{1} b}{f_{y}}\left(\frac{3 d_{t}}{7}\right)+A_{s}^{\prime} \\
& a=\frac{\left(A_{s}-A_{s}^{\prime}\right) f_{y}}{0.85 f_{c}^{\prime} b} \\
& M_{n}=f_{y}\left[\left(A_{s}-A_{s}^{\prime}\right)\left(d-\frac{a}{2}\right)+A_{s}^{\prime}\left(d-d^{\prime}\right)\right]
\end{aligned}
$$

If compression steel does not yield (four steps):

1. Solve for c :

$$
\left.\begin{array}{rl}
\mathrm{c}^{2}+\left(\frac{\left(87,000-0.85 f_{c}^{\prime}\right) A_{s}^{\prime}-A_{s} f_{y}}{0.85 f_{c}^{\prime} \beta_{1} b}\right) c
\end{array}\right]=0
$$

BEAMS - FLEXURE: $\phi M_{n} \geq M_{u}$ (CONTINUED)

## Doubly-reinforced beams (continued)

Compression steel does not yield (continued)
2. $f_{s}^{\prime}=87,000\left(\frac{c-d^{\prime}}{c}\right)$
3. $A_{s, \max }=\frac{0.85 f_{c}{ }^{\prime} \beta_{1} b}{f_{y}}\left(\frac{3 d_{t}}{7}\right)-A_{s}{ }^{\prime}\left(\frac{f_{s}{ }^{\prime}}{f_{y}}\right)$
4. $a=\frac{\left(A_{s} f_{y}-A_{s}{ }^{\prime} f_{s}{ }^{\prime}\right)}{0.85 f_{c}{ }^{\prime} b}$

$$
M_{n}=f_{s}^{\prime}\left[\left(\frac{A_{s} f_{y}}{f_{s}^{\prime}}-A_{s}^{\prime}\right)\left(d-\frac{a}{2}\right)+A_{s}^{\prime}\left(d-d^{\prime}\right)\right]
$$

## T-beams - tension reinforcement in stem

Effective flange width:

$$
b_{e}=\left\{\begin{array}{l}
1 / 4 \bullet \text { span length } \\
b_{w}+16 \bullet h_{f} \\
\text { beam centerline spacing }
\end{array}\right.
$$

Design moment strength:

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{e}}
$$

If $a \leq h_{f}$ :

$$
\begin{aligned}
& A_{s, \max }=\frac{0.85 f_{c}^{\prime} \beta_{1} b_{e}}{f_{y}}\left(\frac{3 d_{t}}{7}\right) \\
& M_{n}=0.85 f_{c}^{\prime} a b_{e}\left(d-\frac{a}{2}\right)
\end{aligned}
$$

If $a>h_{f}$ :

$$
\begin{aligned}
& A_{s, \max }=\frac{0.85 f_{c}^{\prime} \beta_{1} b_{e}}{f_{y}}\left(\frac{3 d_{t}}{7}\right)+\frac{0.85 f_{c}^{\prime}\left(b_{e}-b_{w}\right) h_{f}}{f_{y}} \\
& M_{n}=0.85 f_{c}^{\prime}\left[h_{f}\left(b_{e}-b_{w}\right)\left(d-\frac{h_{f}}{2}\right)\right. \\
&\left.+a b_{w}\left(d-\frac{a}{2}\right)\right]
\end{aligned}
$$

BEAMS - SHEAR: $\phi V_{n} \geq V_{u}$

Beam width used in shear equations:

$$
b_{w}=\left\{\begin{array}{l}
b \text { (rectangular beams ) } \\
b_{w}(\mathrm{~T}-\mathrm{beams})
\end{array}\right.
$$

Nominal shear strength:

$$
\begin{aligned}
& V_{n}=V_{c}+V_{s} \\
& V_{c}=2 b_{w} d \sqrt{f_{c}^{\prime}} \\
& V_{s}=\frac{A_{v} f_{y} d}{s}\left[\text { may not exceed } 8 b_{w} d \sqrt{f_{c}^{\prime \prime}}\right]
\end{aligned}
$$

Required and maximum-permitted stirrup spacing, $s$

$$
\begin{aligned}
V_{u} & \leq \frac{\phi V_{c}}{2}: \text { No stirrups required } \\
V_{u} & >\frac{\phi V_{c}}{2}: \text { Use the following table }\left(A_{v} \text { given }\right):
\end{aligned}
$$

|  | $\frac{\phi V_{c}}{2}<V_{u} \leq \phi V_{c}$ |
| :--- | :--- | :--- |$\quad V_{u}>\phi V_{c}$.

## SHORT COLUMNS

Limits for main reinforcements:

$$
\begin{aligned}
& \rho_{g}=\frac{A_{s t}}{A_{g}} \\
& 0.01 \leq \rho_{g} \leq 0.08
\end{aligned}
$$

## Definition of a short column:

$\frac{K L}{r} \leq 34-\frac{12 M_{1}}{M_{2}}$
where: $\quad K L=L_{c o l} \quad$ clear height of column [assume $K=1.0$ ]
$r=0.288 h$ rectangular column, $h$ is side length perpendicular to buckling axis (i.e., side length in the plane of buckling )
$r=0.25 h \quad$ circular column, $h=$ diameter
$M_{1}=$ smaller end moment
$M_{2}=$ larger end moment
$\frac{M_{1}}{M_{2}}\left\{\begin{array}{l}\text { positive if } M_{1}, M_{2} \text { cause single curvature } \\ \text { negative if } M_{1}, M_{2} \text { cause reverse curvature }\end{array}\right.$

## LONG COLUMNS - Braced (non-sway) frames

Definition of a long column:
$\frac{K L}{r}>34-\frac{12 M_{1}}{M_{2}}$

## Critical load:

$P_{c}=\frac{\pi^{2} E I}{(K L)^{2}}=\frac{\pi^{2} E I}{\left(L_{c o l}\right)^{2}}$
where: $E I=0.25 E_{c} I_{g}$

## Concentrically-loaded long columns:

$e_{\text {min }}=(0.6+0.03 h)$ minimum eccentricity
$M_{1}=M_{2}=P_{u} e_{\min } \quad$ (positive curvature)
$\frac{K L}{r}>22$
$M_{c}=\frac{M_{2}}{1-\frac{P_{u}}{0.75 P_{c}}}$
Use Load-moment strength interaction diagram to design/analyze column for $P_{u}, M_{u}$

## Long columns with end moments:

$M_{1}=$ smaller end moment
$M_{2}=$ larger end moment
$\frac{M_{1}}{M_{2}}$ positive if $M_{1}, M_{2}$ produce single curvature
$C_{m}=0.6+\frac{0.4 M_{1}}{M_{2}} \geq 0.4$
$M_{c}=\frac{C_{m} M_{2}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq M_{2}$
Use Load-moment strength interaction diagram to design/analyze column for $P_{u}, M_{u}$


## GRAPH A. 11

Column strength interaction diagram for rectangular section with bars on end faces and $\gamma=0.80$ (for instructional use only).

Design of Concrete Structures, 13th ed., Nilson, Darwin, Dolan,
McGraw-Hill ISBN 0-07-248305-9 GRAPH A.11, Page 762


## GRAPH A. 15

Column strength interaction diagram for circular section $\gamma=0.80$ (for instructional use only).
Design of Concrete Structures, 13th Edition (2004), Nilson, Darwin, Dolan
McGraw-Hill ISBN 0-07-248305-9 GRAPH A.15, Page 766

## STEEL STRUCTURES

## LOAD COMBINATIONS (LRFD)

Floor systems: 1.4D
$1.2 \mathrm{D}+1.6 \mathrm{~L}$

References: AISC LRFD Manual, 3rd Edition
AISC ASD Manual, 9th Edition

Roof systems: $\quad 1.2 \mathrm{D}+1.6\left(\mathrm{~L}_{\mathrm{r}}\right.$ or S or R$)+0.8 \mathrm{~W}$
$1.2 \mathrm{D}+0.5\left(\mathrm{~L}_{\mathrm{r}}\right.$ or S or R$)+1.3 \mathrm{~W}$
$0.9 \mathrm{D} \pm 1.3 \mathrm{~W}$
where: $\quad \mathrm{D}=$ dead load due to the weight of the structure and permanent features
L = live load due to occupancy and moveable equipment
$L_{r}=$ roof live load
S = snow load
$\mathrm{R}=$ load due to initial rainwater (excluding ponding) or ice
$\mathrm{W}=$ wind load
TENSION MEMBERS: flat plates, angles (bolted or welded)
Gross area: $\quad A_{g}=b_{g} t$ (use tabulated value for angles)

$$
\begin{aligned}
& \text { Net area: } \quad A_{n}=\left(b_{g}-\Sigma D_{h}+\frac{s^{2}}{4 g}\right) t \text { across critical chain of holes } \\
& \text { where: } \quad b_{g}=\text { gross width } \\
& t=\text { thickness } \\
& s=\text { longitudinal center-to-center spacing (pitch) of two consecutive holes } \\
& g=\text { transverse center-to-center spacing (gage) between fastener gage lines } \\
& D_{h}=\text { bolt-hole diameter }
\end{aligned}
$$

Effective area (bolted members):
$A_{e}=U A_{n}\left\{\begin{array}{l}U=1.0 \text { (flat bars) } \\ U=0.85 \text { (angles with } \geq 3 \text { bolts in line) } \\ U=0.75 \text { (angles with } 2 \text { bolts in line) }\end{array}\right.$

## LRFD

Yielding: $\quad \phi T_{n}=\phi_{y} A_{g} F_{y}=0.9 A_{g} F_{y}$
Fracture: $\quad \phi T_{n}=\phi_{f} A_{e} F_{u}=0.75 A_{e} F_{u}$
Block shear rupture (bolted tension members):
$A_{g t}=$ gross tension area
$A_{g v}=$ gross shear area
$A_{n t}=$ net tension area
$A_{n v}=$ net shear area
When $F_{u} A_{n t} \geq 0.6 F_{u} A_{n v}$ :

$$
\phi R_{n}=\left\{\begin{array}{l}
0.75\left[0.6 F_{y} A_{g v}+F_{u} A_{n t}\right] \\
0.75\left[0.6 F_{u} A_{n v}+F_{u} A_{n t}\right]
\end{array}\right.
$$

When $F_{u} A_{n t}<0.6 F_{u} A_{n v}$ :

$$
\phi R_{n}=\left\{\begin{array}{l}
0.75\left[0.6 F_{u} A_{n v}+F_{y} A_{g t}\right] \\
0.75\left[0.6 F_{u} A_{n v}+F_{u} A_{n t}\right]
\end{array}\right.
$$

Effective area (welded members):

$$
A_{e}=U A_{g}\left\{\begin{array}{l}
U=1.0 \text { (flat bars, } L \geq 2 w) \\
U=0.87 \text { (flat bars, } 2 w>L \geq 1.5 w) \\
U=0.75 \text { (flat bars, } 1.5 w>L \geq w) \\
U=0.85 \text { (angles) }
\end{array}\right.
$$

Yielding: $\quad T_{a}=A_{g} F_{t}=A_{g}\left(0.6 F_{y}\right)$
Fracture: $\quad T_{a}=A_{e} F_{t}=A_{e}\left(0.5 F_{u}\right)$

Block shear rupture (bolted tension members):

$$
\begin{aligned}
& T_{a}=\left(0.30 F_{u}\right) A_{n v}+\left(0.5 F_{u}\right) A_{n t} \\
& A_{n t}=\text { net tension area } \\
& A_{n v}=\text { net shear area }
\end{aligned}
$$

BEAMS: homogeneous beams, flexure about $x$-axis
Flexure - local buckling:
No local buckling if section is compact:

$$
\frac{b_{f}}{2 t_{f}} \leq \frac{65}{\sqrt{F_{y}}} \quad \text { and } \quad \frac{h}{t_{w}} \leq \frac{640}{\sqrt{F_{y}}}
$$

where: $\quad$ For rolled sections, use tabulated values of $\frac{b_{f}}{2 t_{f}}$ and $\frac{h}{t_{w}}$
For built-up sections, $h$ is clear distance between flanges
For $\mathrm{F}_{\mathrm{y}} \leq 50 \mathrm{ksi}$, all rolled shapes except $\mathrm{W} 6 \times 19$ are compact.

Flexure - lateral-torsional buckling: $\quad L_{b}=$ unbraced length

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { LRFD-compact rolled shapes } \\
L_{p}=\frac{300 r_{y}}{\sqrt{F_{y}}} \\
L_{r}=\frac{r_{y} X_{1}}{F_{L}} \sqrt{1+\sqrt{1+X_{2} F_{L}^{2}}}
\end{array}\right\} \mathrm{Z}_{\mathrm{x}} \text { Table } \\
& \text { where: } F_{L}=F_{y}-10 \mathrm{ksi} \\
& \left.\begin{array}{l}
X_{1}=\frac{\pi}{S_{x}} \sqrt{\frac{E G J A}{2}} \\
X_{2}=4 \frac{C_{\mathrm{w}}}{I_{y}}\left(\frac{S_{x}}{G J}\right)^{2}
\end{array}\right\} \begin{array}{l} 
\\
\text { W-Shapes } \\
\begin{array}{l}
\text { Dimensions } \\
\text { and Properties } \\
\text { Table }
\end{array}
\end{array} \\
& \phi=0.90 \\
& \left.\begin{array}{l}
\phi M_{p}=\phi F_{y} Z_{x} \\
\phi M_{r}=\phi F_{L} S_{x}
\end{array}\right\} Z_{\mathrm{x}} \text { Table } \\
& C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}} \\
& L_{b} \leq L_{p}: \quad \phi M_{n}=\phi M_{p} \\
& L_{p}<L_{b} \leq L_{r}: \\
& \phi M_{n}=C_{b}\left[\phi M_{p}-\left(\phi M_{p}-\phi M_{r}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \\
& =C_{b}\left[\phi M_{p}-B F\left(L_{b}-L_{p}\right)\right] \leq \phi M_{p} \\
& \text { See } Z_{x} \text { Table for } B F \\
& L_{b}>L_{r}: \\
& \phi M_{n}=\frac{\phi C_{b} S_{x} X_{1} \sqrt{2}}{L_{b} / r_{y}} \sqrt{1+\frac{X_{1}^{2} X_{2}}{2\left(L_{b} / r_{y}\right)^{2}}} \leq \phi \mathrm{M}_{\mathrm{p}}
\end{aligned}
$$

See Beam Design Moments curve

$$
\begin{gather*}
\text { ASD-compact rolled shapes } \\
L_{c}=\frac{76 b_{f}}{\sqrt{F_{y}}} \text { or } \frac{20,000}{\left(d / A_{f}\right) F_{y}} \text { use smaller } \\
C_{b}=1.75+1.05\left(M_{1} / M_{2}\right)+0.3\left(M_{1} / M_{2}\right)^{2} \leq 2.3 \\
M_{1} \text { is smaller end moment } \\
M_{1} / M_{2} \text { is positive for reverse curvature } \\
\begin{aligned}
& M_{a}=S F_{b} \\
& L_{b} \leq L_{c}: F_{b}=0.66 F_{y} \\
& L_{b}>L_{c}: \\
& F_{b} \quad {\left[\frac{2}{3}-\frac{F_{y}\left(L_{b} / r_{T}\right)^{2}}{1,530,000 C_{b}}\right] \leq 0.6 F_{y} } \\
& F_{b}= \frac{170,000 C_{b}}{\left(L_{b} / r_{T}\right)^{2}} \leq 0.6 F_{y} \\
& F_{b} \quad= \frac{12,000 C_{b}}{L_{b} d / A_{f}} \leq 0.6 F_{y}
\end{aligned}
\end{gather*}
$$

For: $\sqrt{\frac{102,000 C_{b}}{F_{y}}}<\frac{L_{b}}{r_{T}} \leq \sqrt{\frac{510,000 C_{b}}{F_{y}}}$ :
Use larger of (F1-6) and (F1-8)
For: $\frac{L_{b}}{r_{T}}>\sqrt{\frac{510,000 C_{b}}{F_{y}}}$ :
Use larger of (F1-7) and (F1-8)

See Allowable Moments in Beams curve

$$
\begin{gathered}
\text { LRFD - E }=\mathbf{2 9 , 0 0 0} \mathbf{~ k s i} \\
\phi=0.90 \quad A_{w}=d t_{w} \\
\frac{h}{t_{w}} \leq \frac{417}{\sqrt{F_{y}}} \quad \phi V_{n}=\phi\left(0.6 F_{y}\right) A_{w} \\
\frac{417}{\sqrt{F_{y}}}<\frac{h}{t_{w}} \leq \frac{523}{\sqrt{F_{y}}} \\
\phi V_{n}=\phi\left(0.6 F_{y}\right) A_{w}\left[\frac{417}{\left(h / t_{w}\right) \sqrt{F_{y}}}\right] \\
\frac{523}{\sqrt{F_{y}}}<\frac{h}{t_{w}} \leq 260 \quad \\
\phi V_{n}=\phi\left(0.6 F_{y}\right) A_{w}\left[\frac{218,000}{\left(h / t_{w}\right)^{2} F_{y}}\right]
\end{gathered}
$$

$$
\begin{array}{cl}
\text { For } \frac{h}{t_{w}} \leq \frac{380}{\sqrt{F_{y}}}: & F_{v}=0.40 F_{y} \\
\text { For } \frac{h}{t_{w}}>\frac{380}{\sqrt{F_{y}}}: & F_{v}=\frac{F_{y}}{2.89}\left(C_{v}\right) \leq 0.4 F_{y}
\end{array}
$$

where for unstiffened beams:

$$
k_{v}=5.34
$$

$$
\mathrm{C}_{\mathrm{v}}=\frac{190}{h / t_{w}} \sqrt{\frac{k_{v}}{F_{y}}}=\frac{439}{\left(h / t_{w}\right) \sqrt{F_{y}}}
$$

## COLUMNS

## Column effective length $K L$ :

AISC Table C-C2.1 (LRFD and ASD)-Effective Length Factors (K) for Columns
AISC Figure C-C2.2 (LRFD and ASD)-Alignment Chart for Effective Length of Columns in Frames

## Column capacities

## LRFD

Column slenderness parameter:

$$
\lambda_{\mathrm{c}}=\left(\frac{K L}{r}\right)_{\max }\left(\frac{1}{\pi} \sqrt{\frac{F_{y}}{E}}\right)
$$

Nominal capacity of axially loaded columns (doubly symmetric section, no local buckling):

$$
\begin{array}{ll}
\phi=0.85 & \\
\lambda_{\mathrm{c}} \leq 1.5: & \phi F_{c r}=\phi\left(0.658^{\lambda_{c}^{2}}\right) F_{y} \\
\lambda_{\mathrm{c}}>1.5: & \phi F_{c r}=\phi\left[\frac{0.877}{\lambda_{c}^{2}}\right] F_{y}
\end{array}
$$

See Table 3-50: Design Stress for Compression
Members ( $F_{y}=50 \mathrm{ksi}, \phi=0.85$ )

## ASD

Column slenderness parameter:

$$
C_{c}=\sqrt{\frac{2 \pi^{2} E}{F_{y}}}
$$

Allowable stress for axially loaded columns (doubly symmetric section, no local buckling):
When $\left(\frac{K L}{r}\right)_{\max } \leq C_{c}$

$$
F_{a}=\frac{\left[1-\frac{(K L / r)^{2}}{2 C_{c}^{2}}\right] F_{y}}{\frac{5}{3}+\frac{3(K L / r)}{8 C_{c}}-\frac{(\mathrm{KL} / \mathrm{r})^{3}}{8 C_{c}^{3}}}
$$

When $\left(\frac{K L}{r}\right)_{\max }>C_{c}: \quad F_{a}=\frac{12 \pi^{2} E}{23(K L / r)^{2}}$
See Table C-50: Allowable Stress for Compression
Members $\left(F_{y}=50 \mathrm{ksi}\right)$

BEAM-COLUMNS: Sidesway prevented, x -axis bending, transverse loading between supports (no moments at ends), ends unrestrained against rotation in the plane of bending

| LRFD |  |
| ---: | :--- |
| $\frac{P_{u}}{\phi P_{n}} \geq 0.2: \quad \frac{P_{u}}{\phi P_{n}}+\frac{8}{9} \frac{M_{u}}{\phi M_{n}} \leq 1.0$ |  |
| $\frac{P_{u}}{\phi P_{n}}<0.2: \quad \frac{P_{u}}{2 \phi P_{n}}+\frac{M_{u}}{\phi M_{n}} \leq 1.0$ |  |
| where: |  |
| $M_{u}$ | $=B_{l} M_{n t}$ |
| $B_{l}$ | $=\frac{C_{m}}{1-\frac{P_{u}}{P_{e x}}} \geq 1.0$ |
| $C_{m}$ | $=1.0 \quad$ for conditions stated above |
| $P_{e x}$ | $=\left(\frac{\pi^{2} E I_{x}}{\left(K L_{x}\right)^{2}}\right) \mathrm{x}$-axis bending |

> | $\frac{f_{a}}{F_{a}}>0.15:$ | $\frac{f_{a}}{F_{a}}+\frac{C_{m} f_{b}}{\left(1-\frac{f_{a}}{F_{e}^{\prime}}\right) F_{b}} \leq 1.0$ |
| :--- | :--- |
| $\frac{f_{a}}{F_{a}} \leq 0.15:$ | $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1.0$ |

where:
$C_{m}=1.0 \quad$ for conditions stated above
$F_{e}^{\prime}=\frac{12 \pi^{2} E}{23\left(K L_{x} / r_{x}\right)^{2}} \mathrm{x}$-axis bending

BOLTED CONNECTIONS: A325 bolts $\quad d_{b}=$ nominal bolt diameter $\quad A_{b}=$ nominal bolt area
s = spacing between centers of bolt holes in direction of force
$L_{e}=$ distance between center of bolt hole and edge of member in direction of force
$\mathrm{t}=$ member thickness
$\mathrm{D}_{\mathrm{h}}=$ bolt hole diameter $=\mathrm{d}_{\mathrm{b}}+{ }^{1} / 16^{\prime \prime}$ [standard holes]

Bolt tension and shear strengths:

| LRFD |  |  |  |
| :---: | :---: | :---: | :---: |
| Design strength (kips / bolt): |  |  |  |
| Tension: $\quad \phi R_{t}=\phi F_{t} A_{b}$ |  |  |  |
| Shear: $\quad \phi R_{v}=\phi F_{v} A_{b}$ |  |  |  |
| Design resistance to slip at factored loads <br> ( kips / bolt ): $\phi R_{n}$ |  |  |  |
|  |  |  |  |
| Bolt strength | Bolt size |  |  |
|  | 3/4" | 7/8" | $1{ }^{\prime \prime}$ |
| $\phi R_{t}$ | 29.8 | 40.6 | 53.0 |
| $\phi R_{v}(\mathrm{~A} 325-\mathrm{N})$ | 15.9 | 21.6 | 28.3 |
| $\phi R_{n}$ (A325-SC) | 10.4 | 14.5 | 19.0 |
| $\phi R_{v}$ and $\phi R_{n}$ values are single shear |  |  |  |

## ASD

Design strength ( kips / bolt ):
Tension: $\quad R_{t}=F_{t} A_{b}$
Shear: $\quad R_{v}=F_{v} A_{b}$
Design resistance to slip at service loads
(kips / bolt): $R_{v}$

| Bolt strength | Bolt size |  |  |
| :---: | :---: | :---: | :---: |
|  | $3 / 4 "$ | $7 / 8^{\prime \prime}$ | $1 "$ |
| $R_{t}$ | 19.4 | 26.5 | 34.6 |
| $R_{v}(\mathrm{~A} 325-\mathrm{N})$ | 9.3 | 12.6 | 16.5 |
| $R_{v}(\mathrm{~A} 325-\mathrm{SC})$ | 6.63 | 9.02 | 11.8 |

$R_{v}$ values are single shear

## Bearing strength

## LRFD

Design strength (kips/bolt/inch thickness):

$$
\phi r_{n}=\phi 1.2 L_{c} F_{u} \leq \phi 2.4 d_{b} F_{u}
$$

$$
\phi=0.75
$$

$L_{c}=$ clear distance between edge of hole and edge of adjacent hole, or edge of member, in direction of force
$L_{c}=s-D_{h}$
$L_{c}=L_{e}-\frac{D_{h}}{2}$
Design bearing strength (kips/bolt/inch thickness) for various bolt spacings, s , and end distances, $\mathrm{L}_{\mathrm{e}}$ :

| Bearing <br> strength <br> $\phi r_{n}(\mathrm{k} / \mathrm{bolt} / \mathrm{in})$ | Bolt size |  |  |
| :---: | :---: | :---: | :---: |
|  | $3 / 4^{\prime \prime}$ | $7 / 8^{\prime \prime}$ | $1 "$ |
| $\mathrm{~s}=2^{2} / \mathrm{d}_{\mathrm{b}} \mathrm{d}_{\text {( }}$ ( minimum permitted ) |  |  |  |
| $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 62.0 | 72.9 | 83.7 |
| $\mathrm{~F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 69.5 | 81.7 | 93.8 |
| $\mathrm{~s}=3 "$ |  |  |  |
| $\mathrm{~F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 78.3 | 91.3 | 101 |
| $\mathrm{~F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 87.7 | 102 | 113 |
| $\mathrm{~L}_{\mathrm{e}}=11 / 4 "$ |  |  |  |
| $\mathrm{~F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 44.0 | 40.8 | 37.5 |
| $\mathrm{~F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 49.4 | 45.7 | 42.0 |
| $\mathrm{~L}_{\mathrm{e}}=2{ }^{\prime \prime}$ |  |  |  |
| $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 78.3 | 79.9 | 76.7 |
| $\mathrm{~F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 87.7 | 89.6 | 85.9 |

The bearing resistance of the connection shall be taken as the sum of the bearing resistances of the individual bolts.

## ASD

Design strength (kips/bolt/inch thickness):
When $\mathrm{s} \geq 3 \mathrm{~d}_{\mathrm{b}}$ and $\mathrm{L}_{\mathrm{e}} \geq 1.5 \mathrm{~d}_{\mathrm{b}}$

$$
r_{b}=1.2 F_{u} d_{b}
$$

When $\mathrm{L}_{\mathrm{e}}<1.5 \mathrm{~d}_{\mathrm{b}}: r_{b}=\frac{L_{e} F_{u}}{2}$
When $\mathrm{s}<3 \mathrm{~d}_{\mathrm{b}}$ :

$$
r_{b}=\frac{\left(s-\frac{d_{b}}{2}\right) F_{u}}{2} \leq 1.2 F_{u} d_{b}
$$

Design bearing strength (kips/bolt/inch thickness) for various bolt spacings, s , and end distances, $L_{\mathrm{e}}$ :

| Bearing |  | Bolt siz |  |
| :---: | :---: | :---: | :---: |
| $r_{b}(\mathrm{k} / \mathrm{bolt} / \mathrm{in})$ | 3/4" | 7/8" | $1{ }^{\prime \prime}$ |
| $\mathrm{s} \geq 3 \mathrm{~d}_{\mathrm{b}} \quad$ and $\mathrm{L}_{\mathrm{c}} \geq 1.5 \mathrm{~d}_{\mathrm{b}}$ |  |  |  |
| $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 52.2 | 60.9 | 69.6 |
| $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 58.5 | 68.3 | 78.0 |
| $\mathrm{s}=22 / 3 \mathrm{~d}_{\mathrm{b}}$ (minimum permitted) |  |  |  |
| $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 47.1 | 55.0 | 62.8 |
| $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 52.8 | 61.6 | 70.4 |
| $\mathrm{L}_{\mathrm{e}}=11 / 4{ }^{\prime \prime}$ |  |  |  |
| $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$ | 36. | [all bol |  |
| $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$ | 40. | [all bol |  |



Table 1-1: W-Shapes Dimensions and Properties

From: AISC LRFD Manual, 3rd
Edition, except as noted.


Table 1-1: W-Shapes Dimensions and Properties (continued)

| Shape | Area A | Depth d | Web <br> $t_{w}$ | Flange |  | Compact section |  | $\mathrm{X}_{1}$ | $\begin{gathered} X_{2} \\ \times 106 \end{gathered}$ | $\begin{aligned} & \mathbf{r}_{\mathbf{T}} \\ & * * \end{aligned}$ | $\begin{gathered} \mathbf{d} / \mathbf{A}_{f} \\ * * \end{gathered}$ | Axis X-X |  |  |  | Axis Y-Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{b}_{\mathbf{f}}$ | $\mathbf{t ~ f}_{\text {f }}$ |  |  | I |  |  |  | S | r | Z | I | r |
|  | in. ${ }^{2}$ | in. | in. | in. | in. | $\mathbf{b}_{\mathbf{f}} / \mathbf{2} \mathbf{t}_{f}$ | h/tw |  | ksi | 1/ksi | in. | 1/in. | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. |
| $\mathrm{W} 18 \times 86$ | 25.3 | 18.4 | 0.48 | 11.1 | 0.77 | 7.20 | 33.4 | 2460 | 4060 | 2.97 | 2.15 | 1530 | 166 | 7.77 | 186 | 175 | 2.63 |
| $\mathrm{W} 18 \times 76$ | 22.3 | 18.2 | 0.43 | 11.0 | 0.68 | 8.11 | 37.8 | 2180 | 6520 | 2.95 | 2.43 | 1330 | 146 | 7.73 | 163 | 152 | 2.61 |
| W18 $\times 71$ | 20.8 | 18.5 | 0.50 | 7.64 | 0.81 | 4.71 | 32.4 | 2690 | 3290 | 1.98 | 2.99 | 1170 | 127 | 7.50 | 146 | 60.3 | 1.70 |
| $\mathrm{W} 18 \times 65$ | 19.1 | 18.4 | 0.45 | 7.59 | 0.75 | 5.06 | 35.7 | 2470 | 4540 | 1.97 | 3.22 | 1070 | 117 | 7.49 | 133 | 54.8 | 1.69 |
| W18 $\times 60$ | 17.6 | 18.2 | 0.42 | 7.56 | 0.70 | 5.44 | 38.7 | 2290 | 6080 | 1.96 | 3.47 | 984 | 108 | 7.47 | 123 | 50.1 | 1.68 |
| $\mathrm{W} 18 \times 55$ | 16.2 | 18.1 | 0.39 | 7.53 | 0.63 | 5.98 | 41.1 | 2110 | 8540 | 1.95 | 3.82 | 890 | 98.3 | 7.41 | 112 | 44.9 | 1.67 |
| $\mathrm{W} 18 \times 50$ | 14.7 | 18.0 | 0.36 | 7.50 | 0.57 | 6.57 | 45.2 | 1920 | 12400 | 1.94 | 4.21 | 800 | 88.9 | 7.38 | 101 | 40.1 | 1.65 |
| $\mathrm{W} 18 \times 46$ | 13.5 | 18.1 | 0.36 | 6.06 | 0.61 | 5.01 | 44.6 | 2060 | 10100 | 1.54 | 4.93 | 712 | 78.8 | 7.25 | 90.7 | 22.5 | 1.29 |
| W18 $\times 40$ | 11.8 | 17.9 | 0.32 | 6.02 | 0.53 | 5.73 | 50.9 | 1810 | 17200 | 1.52 | 5.67 | 612 | 68.4 | 7.21 | 78.4 | 19.1 | 1.27 |
| $\mathrm{W} 18 \times 35$ | 10.3 | 17.7 | 0.30 | 6.00 | 0.43 | 7.06 | 53.5 | 1590 | 30800 | 1.49 | 6.94 | 510 | 57.6 | 7.04 | 66.5 | 15.3 | 1.22 |
| W16 $\times 89$ | 26.4 | 16.8 | 0.53 | 10.4 | 0.88 | 5.92 | 25.9 | 3160 | 1460 | 2.79 | 1.85 | 1310 | 157 | 7.05 | 177 | 163 | 2.48 |
| W16 $\times 77$ | 22.9 | 16.5 | 0.46 | 10.3 | 0.76 | 6.77 | 29.9 | 2770 | 2460 | 2.77 | 2.11 | 1120 | 136 | 7.00 | 152 | 138 | 2.46 |
| W16 $\times 67$ | 20.0 | 16.3 | 0.40 | 10.2 | 0.67 | 7.70 | 34.4 | 2440 | 4040 | 2.75 | 2.40 | 970 | 119 | 6.97 | 132 | 119 | 2.44 |
| W16 $\times 57$ | 16.8 | 16.4 | 0.43 | 7.12 | 0.72 | 4.98 | 33.0 | 2650 | 3400 | 1.86 | 3.23 | 758 | 92.2 | 6.72 | 105 | 43.1 | 1.60 |
| $\mathrm{W} 16 \times 50$ | 14.7 | 16.3 | 0.38 | 7.07 | 0.63 | 5.61 | 37.4 | 2340 | 5530 | 1.84 | 3.65 | 659 | 81.0 | 6.68 | 92.0 | 37.2 | 1.59 |
| W16 $\times 45$ | 13.3 | 16.1 | 0.35 | 7.04 | 0.57 | 6.23 | 41.1 | 2120 | 8280 | 1.83 | 4.06 | 586 | 72.7 | 6.65 | 82.3 | 32.8 | 1.57 |
| W16 $\times 40$ | 11.8 | 16.0 | 0.31 | 7.00 | 0.51 | 6.93 | 46.5 | 1890 | 12700 | 1.82 | 4.53 | 518 | 64.7 | 6.63 | 73.0 | 28.9 | 1.57 |
| W16 $\times 36$ | 10.6 | 15.9 | 0.30 | 6.99 | 0.43 | 8.12 | 48.1 | 1700 | 20400 | 1.79 | 5.28 | 448 | 56.5 | 6.51 | 64.0 | 24.5 | 1.52 |
| W16 $\times 31$ | 9.1 | 15.9 | 0.28 | 5.53 | 0.44 | 6.28 | 51.6 | 1740 | 19900 | 1.39 | 6.53 | 375 | 47.2 | 6.41 | 54.0 | 12.4 | 1.17 |
| $\mathrm{W} 16 \times 26$ | 7.7 | 15.7 | 0.25 | 5.50 | 0.35 | 7.97 | 56.8 | 1480 | 40300 | 1.36 | 8.27 | 301 | 38.4 | 6.26 | 44.2 | 9.59 | 1.12 |
| W14 $\times 120$ | 35.3 | 14.5 | 0.59 | 14.7 | 0.94 | 7.80 | 19.3 | 3830 | 601 | 4.04 | 1.05 | 1380 | 190 | 6.24 | 212 | 495 | 3.74 |
| W14 $\times 109$ | 32.0 | 14.3 | 0.53 | 14.6 | 0.86 | 8.49 | 21.7 | 3490 | 853 | 4.02 | 1.14 | 1240 | 173 | 6.22 | 192 | 447 | 3.73 |
| W14 $\times 99$ | 29.1 | 14.2 | 0.49 | 14.6 | 0.78 | 9.34 | 23.5 | 3190 | 1220 | 4.00 | 1.25 | 1110 | 157 | 6.17 | 173 | 402 | 3.71 |
| W14 $\times 90$ | 26.5 | 14.0 | 0.44 | 14.5 | 0.71 | 10.2 | 25.9 | 2900 | 1750 | 3.99 | 1.36 | 999 | 143 | 6.14 | 157 | 362 | 3.70 |
| $\mathrm{W} 14 \times 82$ | 24.0 | 14.3 | 0.51 | 10.1 | 0.86 | 5.92 | 22.4 | 3590 | 849 | 2.74 | 1.65 | 881 | 123 | 6.05 | 139 | 148 | 2.48 |
| $\mathrm{W} 14 \times 74$ | 21.8 | 14.2 | 0.45 | 10.1 | 0.79 | 6.41 | 25.4 | 3280 | 1200 | 2.72 | 1.79 | 795 | 112 | 6.04 | 126 | 134 | 2.48 |
| W14 $\times 68$ | 20.0 | 14.0 | 0.42 | 10.0 | 0.72 | 6.97 | 27.5 | 3020 | 1660 | 2.71 | 1.94 | 722 | 103 | 6.01 | 115 | 121 | 2.46 |
| $\mathrm{W} 14 \times 61$ | 17.9 | 13.9 | 0.38 | 9.99 | 0.65 | 7.75 | 30.4 | 2720 | 2470 | 2.70 | 2.15 | 640 | 92.1 | 5.98 | 102 | 107 | 2.45 |
| W14 $\times 53$ | 15.6 | 13.9 | 0.37 | 8.06 | 0.66 | 6.11 | 30.9 | 2830 | 2250 | 2.15 | 2.62 | 541 | 77.8 | 5.89 | 87.1 | 57.7 | 1.92 |
| W14 $\times 48$ | 14.1 | 13.8 | 0.34 | 8.03 | 0.60 | 6.75 | 33.6 | 2580 | 3250 | 2.13 | 2.89 | 484 | 70.2 | 5.85 | 78.4 | 51.4 | 1.91 |
| W12 $\times 106$ | 31.2 | 12.9 | 0.61 | 12.2 | 0.99 | 6.17 | 15.9 | 4660 | 285 | 3.36 | 1.07 | 933 | 145 | 5.47 | 164 | 301 | 3.11 |
| W12 $\times 96$ | 28.2 | 12.7 | 0.55 | 12.2 | 0.90 | 6.76 | 17.7 | 4250 | 407 | 3.34 | 1.16 | 833 | 131 | 5.44 | 147 | 270 | 3.09 |
| W12 $\times 87$ | 25.6 | 12.5 | 0.52 | 12.1 | 0.81 | 7.48 | 18.9 | 3880 | 586 | 3.32 | 1.28 | 740 | 118 | 5.38 | 132 | 241 | 3.07 |
| $\mathrm{W} 12 \times 79$ | 23.2 | 12.4 | 0.47 | 12.1 | 0.74 | 8.22 | 20.7 | 3530 | 839 | 3.31 | 1.39 | 662 | 107 | 5.34 | 119 | 216 | 3.05 |
| W12 $\times 72$ | 21.1 | 12.3 | 0.43 | 12.0 | 0.67 | 8.99 | 22.6 | 3230 | 1180 | 3.29 | 1.52 | 597 | 97.4 | 5.31 | 108 | 195 | 3.04 |
| W $12 \times 65$ | 19.1 | 12.1 | 0.39 | 12.0 | 0.61 | 9.92 | 24.9 | 2940 | 1720 | 3.28 | 1.67 | 533 | 87.9 | 5.28 | 96.8 | 174 | 3.02 |
| W12 $\times 58$ | 17.0 | 12.2 | 0.36 | 10.0 | 0.64 | 7.82 | 27.0 | 3070 | 1470 | 2.72 | 1.90 | 475 | 78.0 | 5.28 | 86.4 | 107 | 2.51 |
| $\mathrm{W} 12 \times 53$ | 15.6 | 12.1 | 0.35 | 9.99 | 0.58 | 8.69 | 28.1 | 2820 | 2100 | 2.71 | 2.10 | 425 | 70.6 | 5.23 | 77.9 | 95.8 | 2.48 |
| $\mathrm{W} 12 \times 50$ | 14.6 | 12.2 | 0.37 | 8.08 | 0.64 | 6.31 | 26.8 | 3120 | 1500 | 2.17 | 2.36 | 391 | 64.2 | 5.18 | 71.9 | 56.3 | 1.96 |
| $\mathrm{W} 12 \times 45$ | 13.1 | 12.1 | 0.34 | 8.05 | 0.58 | 7.00 | 29.6 | 2820 | 2210 | 2.15 | 2.61 | 348 | 57.7 | 5.15 | 64.2 | 50.0 | 1.95 |
| W12 $\times 40$ | 11.7 | 11.9 | 0.30 | 8.01 | 0.52 | 7.77 | 33.6 | 2530 | 3360 | 2.14 | 2.90 | 307 | 51.5 | 5.13 | 57.0 | 44.1 | 1.94 |




Table C - C.2.1. K VALUES FOR COLUMNS

| Buckled shape of column is shown by dashed line. | (a) <br>  | (b) | $\overbrace{1}^{(c)}$ | (d) | $\left.\right\|_{1} ^{(e)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Theoretical $K$ value | 0.5 | 0.7 | 1.0 | 1.0 | 2.0 | 2.0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended design <br> value when ideal conditions <br> are approximated | 0.65 | 0.80 | 1.2 | 1.0 | 2.10 | 2.0 |

Figure C-C.2.2.
ALIGNMENT CHART FOR EFFECTIVE LENGTH OF COLUMNS IN CONTINUOUS FRAMES

| $G_{A}$ | $K$ | $G_{B}$ | $G_{A}$ | K | $G_{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{r} 50.0 \\ 10.0 \\ 5.0 \\ 3.0 \\ 3.0 \\ 2.0 \\ \hline \end{array}\right]$ | $T^{1.0}$ | $\begin{aligned} & 50.0 \\ & 10.0 \end{aligned}$ | 100.0 - | 耳 ${ }^{20.0}$ | F100.0 |
|  |  | 5.0 | $50.0=$ |  | $-50.0$ |
|  | $-0.9$ | E 3.0 | 30.0 - | - 5.0 | -30.0 |
|  |  | - | $20.0-$ | -4.0 | -20.0 |
|  | - | -2.0 |  |  |  |
|  |  |  | 10.0 | -3.0 | -10.0 |
|  | $-0.8$ |  | 9.0 |  | $-9.0$ |
|  |  | - 1.0 | $8.0-$ |  | -7.0 |
|  |  | - 0.8 | 6.0 - |  | -6.0 |
|  |  | -0.7 | 5.0 - |  | -5.0 |
|  | $-0.7$ | -0.6 | 4.0 - | -20 | -4.0 |
|  |  | -0.5 |  |  |  |
|  |  | -0.4 | $3.0-$ |  | $-3.0$ |
|  |  | - |  | - |  |
|  |  | -0.3 | $2.0-$ | $\dagger$ | $-2.0$ |
|  | $-0.6$ |  |  | $-1.5$ |  |
|  |  | -0.2 |  |  |  |
|  |  | - | $1.0-$ |  | -1.0 |
|  |  | -0.1 |  |  | - |
|  |  |  |  |  |  |
|  | $\perp_{0.5}$ | L | 0 - | $\perp_{1.0}$ | $L_{0}$ |
|  | Y INHI |  |  | UNINH |  |

The subscripts A and B refer to the joints at the two ends of the column section being considered.
$G$ is defined as

$$
G=\frac{\Sigma\left(I_{c} / L_{c}\right)}{\Sigma\left(I_{g} / L_{g}\right)}
$$

in which Eindicates a summation of all members rigidly connected to that joint and lying on the plane in which buckling of the column is being considered. Ic is the moment of inertia and Lc the unsupported length of a column section, and Ig is the moment of inertia and Lg the unsupported length of a girder or other restraining member. Ic and Ig are taken about axes perpendicular to the plane of buckling being considered. For column ends supported by but not rigidly connected to a footing or foundation, $G$ is theoretically infinity, but, unless actually designed as a true friction-free pin, may be taken as "10" for practical designs. If the column end is rigidly attached to a properly designed footing, $G$ may be taken as 1.0. Smaller values may be used if justified by analysis.

## Design Stress, $\phi_{\mathbf{c}} \mathbf{F}_{\mathrm{cr}}$, for Compression Members of 50 ksi Specified Yield Stress Steel, $\phi_{c}=\mathbf{0 . 8 5}$

| $\frac{K l}{r}$ | $\begin{gathered} \phi_{c} \boldsymbol{F}_{c r} \\ \mathbf{k s i} \end{gathered}$ | $\frac{K l}{r}$ | $\begin{gathered} \phi_{c} \boldsymbol{F}_{c r} \\ \mathbf{k s i} \end{gathered}$ | $\frac{K l}{r}$ | $\begin{gathered} \phi_{c} \boldsymbol{F}_{c r} \\ \mathbf{k s i} \end{gathered}$ | $\frac{K l}{r}$ | $\begin{gathered} \phi_{c} \boldsymbol{F}_{c r} \\ \mathbf{k s i} \end{gathered}$ | $\frac{K l}{r}$ | $\begin{gathered} \phi_{\mathrm{c}} \boldsymbol{F}_{c r} \\ \mathbf{k s i} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 42.50 | 41 | 37.59 | 81 | 26.31 | 121 | 14.57 | 161 | 8.23 |
| 2 | 42.49 | 42 | 37.36 | 82 | 26.00 | 122 | 14.33 | 162 | 8.13 |
| 3 | 42.47 | 43 | 37.13 | 83 | 25.68 | 123 | 14.10 | 163 | 8.03 |
| 4 | 42.45 | 44 | 36.89 | 84 | 25.37 | 124 | 13.88 | 164 | 7.93 |
| 5 | 42.42 | 45 | 36.65 | 85 | 25.06 | 125 | 13.66 | 165 | 7.84 |
| 6 | 42.39 | 46 | 36.41 | 86 | 24.75 | 126 | 13.44 | 166 | 7.74 |
| 7 | 42.35 | 47 | 36.16 | 87 | 24.44 | 127 | 13.23 | 167 | 7.65 |
| 8 | 42.30 | 48 | 35.91 | 88 | 24.13 | 128 | 13.02 | 168 | 7.56 |
| 9 | 42.25 | 49 | 35.66 | 89 | 23.82 | 129 | 12.82 | 169 | 7.47 |
| 10 | 42.19 | 50 | 35.40 | 90 | 23.51 | 130 | 12.62 | 170 | 7.38 |
| 11 | 42.13 | 51 | 35.14 | 91 | 23.20 | 131 | 12.43 | 171 | 7.30 |
| 12 | 42.05 | 52 | 34.88 | 92 | 22.89 | 132 | 12.25 | 172 | 7.21 |
| 13 | 41.98 | 53 | 34.61 | 93 | 22.58 | 133 | 12.06 | 173 | 7.13 |
| 14 | 41.90 | 54 | 34.34 | 94 | 22.28 | 134 | 11.88 | 174 | 7.05 |
| 15 | 41.81 | 55 | 34.07 | 95 | 21.97 | 135 | 11.71 | 175 | 6.97 |
| 16 | 41.71 | 56 | 33.79 | 96 | 21.67 | 136 | 11.54 | 176 | 6.89 |
| 17 | 41.61 | 57 | 33.51 | 97 | 21.36 | 137 | 11.37 | 177 | 6.81 |
| 18 | 41.51 | 58 | 33.23 | 98 | 21.06 | 138 | 11.20 | 178 | 6.73 |
| 19 | 41.39 | 59 | 32.95 | 99 | 20.76 | 139 | 11.04 | 179 | 6.66 |
| 20 | 41.28 | 60 | 32.67 | 100 | 20.46 | 140 | 10.89 | 180 | 6.59 |
| 21 | 41.15 | 61 | 32.38 | 101 | 20.16 | 141 | 10.73 | 181 | 6.51 |
| 22 | 41.02 | 62 | 32.09 | 102 | 19.86 | 142 | 10.58 | 182 | 6.44 |
| 23 | 40.89 | 63 | 31.80 | 103 | 19.57 | 143 | 10.43 | 183 | 6.37 |
| 24 | 40.75 | 64 | 31.50 | 104 | 19.28 | 144 | 10.29 | 184 | 6.30 |
| 25 | 40.60 | 65 | 31.21 | 105 | 18.98 | 145 | 10.15 | 185 | 6.23 |
| 26 | 40.45 | 66 | 30.91 | 106 | 18.69 | 146 | 10.01 | 186 | 6.17 |
| 27 | 40.29 | 67 | 30.61 | 107 | 18.40 | 147 | 9.87 | 187 | 6.10 |
| 28 | 40.13 | 68 | 30.31 | 108 | 18.12 | 148 | 9.74 | 188 | 6.04 |
| 29 | 39.97 | 69 | 30.01 | 109 | 17.83 | 149 | 9.61 | 189 | 5.97 |
| 30 | 39.79 | 70 | 29.70 | 110 | 17.55 | 150 | 9.48 | 190 | 5.91 |
| 31 | 39.62 | 71 | 29.40 | 111 | 17.27 | 151 | 9.36 | 191 | 5.85 |
| 32 | 39.43 | 72 | 20.09 | 112 | 16.99 | 152 | 9.23 | 192 | 5.79 |
| 33 | 39.25 | 73 | 28.79 | 113 | 16.71 | 153 | 9.11 | 193 | 5.73 |
| 34 | 39.06 | 74 | 28.48 | 114 | 16.42 | 154 | 9.00 | 194 | 5.67 |
| 35 | 38.86 | 75 | 28.17 | 115 | 16.13 | 155 | 8.88 | 195 | 5.61 |
| 36 | 38.66 | 76 | 27.86 | 116 | 15.86 | 156 | 8.77 | 196 | 5.55 |
| 37 | 38.45 | 77 | 27.55 | 117 | 15.59 | 157 | 8.66 | 197 | 5.50 |
| 38 | 38.24 | 78 | 27.24 | 118 | 15.32 | 158 | 8.55 | 198 | 5.44 |
| 39 | 38.03 | 79 | 26.93 | 119 | 15.07 | 159 | 8.44 | 199 | 5.39 |
| 40 | 37.81 | 80 | 26.62 | 120 | 14.82 | 160 | 8.33 | 200 | 5.33 |


| ALLOWABLE STRESS DESIGN SELECTION TABLE <br> For shapes used as beams |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathrm{ksi}$ |  |  | $S_{\text {x }}$ | SHAPE | $\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$ |  |  |
| $\mathrm{L}_{\mathrm{c}}$ | $\mathrm{L}_{\mathrm{u}}$ | $\mathrm{M}_{\mathrm{R}}$ |  |  | $\mathrm{L}_{\mathrm{c}}$ | $\mathrm{L}_{\mathrm{u}}$ | $\mathrm{M}_{\mathrm{R}}$ |
| Ft | Ft | Kip-ft | In. ${ }^{3}$ |  | Ft | Ft | Kip-ft |
| 5.0 | 6.3 | 314 | 114 | W $24 \times 55$ | 7.0 | 7.5 | 226 |
| 9.0 | 18.6 | 308 | 112 | W $14 \times 74$ | 10.6 | 25.9 | 222 |
| 5.9 | 6.7 | 305 | 111 | W $21 \times 57$ | 6.9 | 9.4 | 220 |
| 6.8 | 9.6 | 297 | 108 | W $18 \times 60$ | 8.0 | 13.3 | 214 |
| 10.8 | 24.0 | 294 | 107 | W $12 \times 79$ | 12.8 | 33.3 | 212 |
| 9.0 | 17.2 | 283 | 103 | W $14 \times 68$ | 10.6 | 23.9 | 204 |
| 6.7 | 8.7 | 270 | 98.3 | W $18 \times 55$ | 7.9 | 12.1 | 195 |
| 10.8 | 21.9 | 268 | 97.4 | W $12 \times 72$ | 12.7 | 30.5 | 193 |
| 5.6 | 6.0 | 260 | 94.5 | W $21 \times 50$ | 6.9 | 7.8 | 187 |
| 6.4 | 10.3 | 254 | 92.2 | W $16 \times 57$ | 7.5 | 14.3 | 183 |
| 9.0 | 15.5 | 254 | 92.2 | W $14 \times 61$ | 10.6 | 21.5 | 183 |
| 6.7 | 7.9 | 244 | 88.9 | W $18 \times 50$ | 7.9 | 11.0 | 176 |
| 10.7 | 20.0 | 238 | 87.9 | W $12 \times 65$ | 12.7 | 27.7 | 174 |
| 4.7 | 5.9 | 224 | 81.6 | W $21 \times 44$ | 6.6 | 7.0 | 162 |
| 6.3 | 9.1 | 223 | 81.0 | W $16 \times 50$ | 7.5 | 12.7 | 160 |
| 5.4 | 6.8 | 217 | 78.8 | W $18 \times 46$ | 6.4 | 9.4 | 156 |
| 9.0 | 17.5 | 215 | 78.0 | W $12 \times 58$ | 10.6 | 24.4 | 154 |
| 7.2 | 12.7 | 214 | 77.8 | W $14 \times 53$ | 8.5 | 17.7 | 154 |
| 6.3 | 8.2 | 200 | 72.7 | W $16 \times 45$ | 7.4 | 11.4 | 144 |
| 9.0 | 15.9 | 194 | 70.6 | W $12 \times 53$ | 10.6 | 22.0 | 140 |
| 7.2 | 11.5 | 193 | 70.3 | W $14 \times 48$ | 8.5 | 16.0 | 139 |
| 5.4 | 5.9 | 188 | 68.4 | W $18 \times 40$ | 6.3 | 8.2 | 135 |
| 9.0 | 22.4 | 183 | 66.7 | W $10 \times 60$ | 10.6 | 31.1 | 132 |
| 6.3 | 7.4 | 178 | 64.7 | W $16 \times 40$ | 7.4 | 10.2 | 128 |
| 7.2 | 14.1 | 178 | 64.7 | W $12 \times 50$ | 8.5 | 19.6 | 128 |
| 7.2 | 10.4 | 172 | 62.7 | W $14 \times 43$ | 8.4 | 14.4 | 124 |
| 9.0 | 20.3 | 165 | 60.0 | W $10 \times 54$ | 10.6 | 28.2 | 119 |
| 7.2 | 12.8 | 160 | 58.1 | W $12 \times 45$ | 8.5 | 17.7 | 115 |
| 4.8 | 5.6 | 158 | 57.6 | W $18 \times 35$ | 6.3 | 6.7 | 114 |
| 6.3 | 6.7 | 115 | 56.5 | W $16 \times 36$ | 7.4 | 8.8 | 112 |
| 6.1 | 8.3 | 150 | 54.6 | W $14 \times 38$ | 7.1 | 11.5 | 108 |
| 9.0 | 18.7 | 150 | 54.6 | W $10 \times 49$ | 10.6 | 26.0 | 108 |
| 7.2 | 11.5 | 143 | 51.9 | W $12 \times 40$ | 8.4 | 16.0 | 103 |
| 7.2 | 16.4 | 135 | 49.1 | W $10 \times 45$ | 8.5 | 22.8 | 97 |
| 6.0 | 7.3 | 134 | 48.6 | W $14 \times 34$ | 7.1 | 10.2 | 96 |
| 4.9 | 5.2 | 130 | 47.2 | W $16 \times 31$ | 5.8 | 7.1 | 93 |
| 5.9 | 9.1 | 125 | 45.6 | W $12 \times 35$ | 6.9 | 12.6 | 90 |
| 7.2 | 14.2 | 116 | 42.1 | W $10 \times 39$ | 8.4 | 19.8 | 83 |
| 6.0 | 6.5 | 116 | 42.0 | W $14 \times 30$ | 7.1 | 8.7 | 83 |
| 5.8 | 7.8 | 106 | 38.6 | W $12 \times 30$ | 6.9 | 10.8 | 76 |
| 4.0 | 5.1 | 106 | 38.4 | W $16 \times 26$ | 5.6 | 6.0 | 76 |



| ASD Table C-50. Allowable Stress <br> for Compression Members of 50-ksi Specified Yield Stress Steel ${ }^{\text {a,b }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{K l}{r}$ | $\begin{gathered} F_{a} \\ (k s i) \end{gathered}$ | $\frac{K l}{r}$ | $\boldsymbol{F}_{a}$ <br> (ksi) | $\frac{K l}{r}$ | $\boldsymbol{F}_{a}$ <br> (ksi) | $\frac{K l}{r}$ | $\begin{gathered} F_{a} \\ (k s i) \end{gathered}$ | $\frac{K l}{r}$ | $\begin{gathered} F_{a} \\ (k s i) \end{gathered}$ |
| 1 | 29.94 | 41 | 25.69 | 81 | 18.81 | 121 | 10.20 | 161 | 5.76 |
| 2 | 29.87 | 42 | 25.55 | 82 | 18.61 | 122 | 10.03 | 162 | 5.69 |
| 3 | 29.80 | 43 | 25.40 | 83 | 18.41 | 123 | 9.87 | 163 | 5.62 |
| 4 | 29.73 | 44 | 25.26 | 84 | 18.20 | 124 | 9.71 | 164 | 5.55 |
| 5 | 29.66 | 45 | 25.11 | 85 | 17.99 | 125 | 9.56 | 165 | 5.49 |
| 6 | 29.58 | 46 | 24.96 | 86 | 17.79 | 126 | 9.41 | 166 | 5.42 |
| 7 | 29.50 | 47 | 24.81 | 87 | 17.58 | 127 | 9.26 | 167 | 5.35 |
| 8 | 29.42 | 48 | 24.66 | 88 | 17.37 | 128 | 9.11 | 168 | 5.29 |
| 9 | 29.34 | 49 | 24.51 | 89 | 17.15 | 129 | 8.97 | 169 | 5.23 |
| 10 | 29.26 | 50 | 24.35 | 90 | 16.94 | 130 | 8.84 | 170 | 5.17 |
| 11 | 29.17 | 51 | 24.19 | 91 | 16.72 | 131 | 8.70 | 171 | 5.11 |
| 12 | 29.08 | 52 | 24.04 | 92 | 16.50 | 132 | 8.57 | 172 | 5.05 |
| 13 | 28.99 | 53 | 23.88 | 93 | 16.29 | 133 | 8.44 | 173 | 4.99 |
| 14 | 28.90 | 54 | 23.72 | 94 | 16.06 | 134 | 8.32 | 174 | 4.93 |
| 15 | 28.80 | 55 | 23.55 | 95 | 15.84 | 135 | 8.19 | 175 | 4.88 |
| 16 | 28.71 | 56 | 23.39 | 96 | 15.62 | 136 | 8.07 | 176 | 4.82 |
| 17 | 28.61 | 57 | 23.22 | 97 | 15.39 | 137 | 7.96 | 177 | 4.77 |
| 18 | 28.51 | 58 | 23.06 | 98 | 15.17 | 138 | 7.84 | 178 | 4.71 |
| 19 | 28.40 | 59 | 22.89 | 99 | 14.94 | 139 | 7.73 | 179 | 4.66 |
| 20 | 28.30 | 60 | 22.72 | 100 | 14.71 | 140 | 7.62 | 180 | 4.61 |
| 21 | 28.19 | 61 | 22.55 | 101 | 14.47 | 141 | 7.51 | 181 | 4.56 |
| 22 | 28.08 | 62 | 22.37 | 102 | 14.24 | 142 | 7.41 | 182 | 4.51 |
| 23 | 27.97 | 63 | 22.20 | 103 | 14.00 | 143 | 7.30 | 183 | 4.46 |
| 24 | 27.86 | 64 | 22.02 | 104 | 13.77 | 144 | 7.20 | 184 | 4.41 |
| 25 | 27.75 | 65 | 21.85 | 105 | 13.53 | 145 | 7.10 | 185 | 4.36 |
| 26 | 27.63 | 66 | 21.67 | 106 | 13.29 | 146 | 7.01 | 186 | 4.32 |
| 27 | 27.52 | 67 | 21.49 | 107 | 13.04 | 147 | 6.91 | 187 | 4.27 |
| 28 | 27.40 | 68 | 21.31 | 108 | 12.80 | 148 | 6.82 | 188 | 4.23 |
| 29 | 27.28 | 69 | 21.12 | 109 | 12.57 | 149 | 6.73 | 189 | 4.18 |
| 30 | 27.15 | 70 | 20.94 | 110 | 12.34 | 150 | 6.64 | 190 | 4.14 |
| 31 | 27.03 | 71 | 20.75 | 111 | 12.12 | 151 | 6.55 | 191 | 4.09 |
| 32 | 26.90 | 72 | 20.56 | 112 | 11.90 | 152 | 6.46 | 192 | 4.05 |
| 33 | 26.77 | 73 | 20.38 | 113 | 11.69 | 153 | 6.38 | 193 | 4.01 |
| 34 | 26.64 | 74 | 20.10 | 114 | 11.49 | 154 | 6.30 | 194 | 3.97 |
| 35 | 26.51 | 75 | 19.99 | 115 | 11.29 | 155 | 6.22 | 195 | 3.93 |
| 36 | 26.38 | 76 | 19.80 | 116 | 11.10 | 156 | 6.14 | 196 | 3.89 |
| 37 | 26.25 | 77 | 19.61 | 117 | 10.91 | 157 | 6.06 | 197 | 3.85 |
| 38 | 26.11 | 78 | 19.41 | 118 | 10.72 | 158 | 5.98 | 198 | 3.81 |
| 39 | 25.97 | 79 | 19.21 | 119 | 10.55 | 159 | 5.91 | 199 | 3.77 |
| 40 | 25.83 | 80 | 19.01 | 120 | 10.37 | 160 | 5.83 | 200 | 3.73 |
| ${ }^{\text {a }}$ When element width-to-thickness ratio exceeds noncompact section limits of Sect. B5.1, see Appendix B5. <br> ${ }^{\mathrm{b}}$ Values also applicable for steel of any yield stress $\geq 39 \mathrm{ksi}$. <br> Note: $C_{c}=107.0$ |  |  |  |  |  |  |  |  |  |

## ENVIRONMENTAL ENGINEERING

For information about environmental engineering refer to the ENVIRONMENTAL ENGINEERING section.

## HYDROLOGY

NRCS (SCS) Rainfall-Runoff

$$
Q=\frac{(P-0.2 S)^{2}}{P+0.8 S}
$$

$$
S=\frac{1,000}{C N}-10,
$$

$$
C N=\frac{1,000}{S+10},
$$

$P=$ precipitation (inches),
$S=$ maximum basin retention (inches),
$Q=$ runoff (inches), and
$\mathrm{CN}=$ curve number.

## Rational Formula

$Q=C I A$, where
$A=$ watershed area (acres),
$C=$ runoff coefficient,
$I=$ rainfall intensity (in/hr), and
$Q=$ peak discharge (cfs).

## DARCY'S LAW

$Q=-K A(d h / d x)$, where
$Q=$ Discharge rate $\left(\mathrm{ft}^{3} / \mathrm{s}\right.$ or $\left.\mathrm{m}^{3} / \mathrm{s}\right)$,
$K=$ Hydraulic conductivity ( $\mathrm{ft} / \mathrm{s}$ or $\mathrm{m} / \mathrm{s}$ ),
$h=$ Hydraulic head (ft or m), and
$A=$ Cross-sectional area of flow $\left(\mathrm{ft}^{2}\right.$ or $\left.\mathrm{m}^{2}\right)$.
$q=-K(d h / d x)$
$q=$ specific discharge or Darcy velocity
$v=q / n=-K / n(d h / d x)$
$v=$ average seepage velocity
$n=$ effective porosity

Unit hydrograph:
The direct runoff hydrograph that would result from one unit of effective rainfall occurring uniformly in space and time over a unit period of time.

Transmissivity, $T$, is the product of hydraulic conductivity and thickness, $b$, of the aquifer $\left(L^{2} T^{-1}\right)$.

Storativity or storage
coefficient, $S, \quad$ of an aquifer is the volume of water taken into or released from storage per unit surface area per unit change in potentiometric (piezometric) head.


## HYDRAULIC-ELEMENTS GRAPH FOR CIRCULAR SEWERS

Values of: $\frac{f}{f_{f}}$ and $\frac{\mathrm{n}}{\mathrm{n}_{f}}$


## Open-Channel Flow

Specific Energy

$$
E=\alpha \frac{V^{2}}{2 g}+y=\frac{\alpha Q^{2}}{2 g A^{2}}+y, \text { where }
$$

$E=$ specific energy,
$Q=$ discharge,
$V=$ velocity,
$y=$ depth of flow,
$A=$ cross-sectional area of flow, and
$\alpha=$ kinetic energy correction factor, usually 1.0 .
Critical Depth $=$ that depth in a channel at minimum specific energy

$$
\frac{Q^{2}}{g}=\frac{A^{3}}{T}
$$

where $Q$ and $A$ are as defined above,
$g=$ acceleration due to gravity, and
$T=$ width of the water surface.

For rectangular channels

$$
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}, \text { where }
$$

$y_{c}=$ critical depth,
$q=$ unit discharge $=Q / B$,
$B=$ channel width, and
$g=$ acceleration due to gravity.
Froude Number = ratio of inertial forces to gravity forces

$$
F=\frac{V}{\sqrt{g y_{h}}} \text {, where }
$$

$V=$ velocity, and
$y_{h}=$ hydraulic depth $=A / T$

Specific Energy Diagram


Alternate depths: depths with the same specific energy.
Uniform flow: a flow condition where depth and velocity do not change along a channel.

## Manning's Equation

$$
Q=\frac{K}{n} A R^{2 / 3} S^{1 / 2}
$$

$Q=$ discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right.$ or $\left.\mathrm{ft}^{3} / \mathrm{s}\right)$,
$K=1.486$ for USCS units, 1.0 for SI units,
$A=$ cross-sectional area of flow $\left(\mathrm{m}^{2}\right.$ or $\left.\mathrm{ft}^{2}\right)$,
$R=$ hydraulic radius $=\mathrm{A} / \mathrm{P}(\mathrm{m}$ or ft$)$,
$P=$ wetted perimeter ( m or ft ),
$S=$ slope of hydraulic surface ( $\mathrm{m} / \mathrm{m}$ or $\mathrm{ft} / \mathrm{ft}$ ), and
$n=$ Manning's roughness coefficient.
Normal depth (uniform flow depth)

$$
A R^{2 / 3}=\frac{Q n}{K S^{1 / 2}}
$$

## Weir Formulas

Fully submerged with no side restrictions

$$
Q=C L H^{3 / 2}
$$

V-Notch
$Q=C H^{5 / 2}$, where
$Q=$ discharge (cfs or $\mathrm{m}^{3} / \mathrm{s}$ ),
$C=3.33$ for submerged rectangular weir (USCS units),
$C=1.84$ for submerged rectangular weir (SI units),
$C=2.54$ for $90^{\circ} \mathrm{V}$-notch weir (USCS units),
$C=1.40$ for $90^{\circ}$ V-notch weir (SI units),
$L=$ weir length (ft or m), and
$H=$ head (depth of discharge over weir) ft or m .

## Hazen-Williams Equation

$V=k_{1} C R^{0.63} S^{0.54}$, where
$C=$ roughness coefficient,
$k_{1}=0.849$ for SI units, and
$k_{1}=1.318$ for USCS units,
$R=$ hydraulic radius ( ft or m ),
$S=$ slope of energy grade line,
$=h_{f} / L(\mathrm{ft} / \mathrm{ft}$ or $\mathrm{m} / \mathrm{m})$, and
$V=$ velocity ( $\mathrm{ft} / \mathrm{s}$ or $\mathrm{m} / \mathrm{s}$ ).

Values of Hazen-Williams Coefficient $C$

| Pipe Material | $C$ |
| :--- | :--- |
| Concrete (regardless of age) | 130 |
| Cast iron: |  |
| $\quad$ New | 130 |
| $\quad 5$ yr old | 120 |
| $\quad 20$ yr old | 100 |
| Welded steel, new | 120 |
| Wood stave (regardless of age) | 120 |
| Vitrified clay | 110 |
| Riveted steel, new | 110 |
| Brick sewers | 100 |
| Asbestos-cement | 140 |
| Plastic | 150 |

For additional fluids information, see the FLUID
MECHANICS section.

## TRANSPORTATION

U.S. Customary Units
$a=$ deceleration rate $\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
$A=$ algebraic difference in grades (\%)
$C=$ vertical clearance for overhead structure (overpass)
located within 200 feet of the midpoint of the curve
$e=$ superelevation (\%)
$f=$ side friction factor
$\pm G=$ percent grade divided by 100 (uphill grade"+")
$h_{1}=$ height of driver's eyes above the roadway surface (ft)
$h_{2}=$ height of object above the roadway surface (ft)
$L \quad=$ length of curve (ft)
$L_{\mathrm{s}}=$ spiral transition length ( ft )
$R=$ radius of curve ( ft )
$S=$ stopping sight distance ( ft )
$t=$ driver reaction time (sec)
$V=$ design speed (mph)

## Stopping Sight Distance

$S=\frac{V^{2}}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)}+1.47 V t$

## Transportation Models

See INDUSTRIAL ENGINEERING for optimization models and methods, including queueing theory.

## Traffic Flow Relationships ( $\mathbf{q}=\mathbf{k v}$ )





| Vertical Curves: Sight Distance Related to Curve Length |  |  |
| :--- | :---: | :---: |
|  | $L=\frac{S \leq L}{100\left(\sqrt{2 h_{1}}+\sqrt{2 h_{2}}\right)^{2}}$ | $L=2 S-\frac{200\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}{A}$ |
| Crest Vertical Curve <br> General equation: | $L=\frac{A S^{2}}{2,158}$ | $L=2 S-\frac{2,158}{A}$ |
| For $\mathrm{h}_{1}=3.50 \mathrm{ft}$ and $\mathrm{h}_{2}=2.0 \mathrm{ft}:$ | $L=\frac{A S^{2}}{400+3.5 S}$ | $L=2 S-\left(\frac{400+3.5 S}{A}\right)$ |
| Sag Vertical Curve <br> (based on standard headlight <br> criteria) | $L=\frac{A V^{2}}{46.5}$ |  |
| Sag Vertical Curve <br> (based on riding comfort) | $L=\frac{A S^{2}}{800\left(C-\frac{h_{1}+h_{2}}{2}\right)}$ | $L=2 S-\frac{800}{A}\left(C-\frac{h_{1}+h_{2}}{2}\right)$ |
| Sag Vertical Curve <br> (based on adequate sight distance <br> under an overhead structure to see an <br> object beyond a sag vertical curve) | $C=$vertical clearance for overhear structure (overpass) located within 200 <br> feet of the midpoint of the curve |  |


| Horizontal Curves | $0.01 e+f=\frac{V^{2}}{15 R}$ |
| :--- | :---: |
| Side friction factor (based on superelevation) | $L_{s}=\frac{3.15 V^{3}}{R C}$ <br> Spiral Transition Length <br> C= rate of increase of lateral acceleration <br> [use 1 $\mathrm{ft} / \mathrm{sec}^{3}$ unless otherwise stated] |
| Sight Distance (to see around obstruction) | $\quad \mathrm{HSO}=R\left[1-\cos \left(\frac{28.65 S}{R}\right)\right]$ |

## HORIZONTAL CURVE FORMULAS

D = Degree of Curve, Arc Definition
P.C. $=$ Point of Curve (also called B.C.)
P.T. $=$ Point of Tangent (also called E.C.)
P.I. $=$ Point of Intersection

I = Intersection Angle (also called $\Delta$ )
Angle between two tangents
$\mathrm{L}=$ Length of Curve,
from P.C. to P.T.
$\mathrm{T}=$ Tangent Distance
E = External Distance
$\mathrm{R}=$ Radius
L.C. $=$ Length of Long Chord

M = Length of Middle Ordinate
c $=$ Length of Sub-Chord
d = Angle of Sub-Chord


$$
\begin{aligned}
& R=\frac{5729.58}{D} \\
& R=\frac{L . C .}{2 \sin (I / 2)} \\
& T=R \tan (I / 2)=\frac{L . C .}{2 \cos (I / 2)} \\
& L=R I \frac{\pi}{180}=\frac{I}{D} 100 \\
& M=R[1-\cos (I / 2)] \\
& \frac{R}{E+R}=\cos (I / 2) \\
& \frac{R-M}{R}=\cos (I / 2) \\
& c=2 R \sin (d / 2) \\
& E=R\left[\frac{1}{\cos (I / 2)}-1\right]
\end{aligned}
$$

Deflection angle per 100 feet of arc length equals $D / 2$

## VERTICAL CURVE FORMULAS


$L=$ Length of Curve (horizontal)
$P V C=$ Point of Vertical Curvature
$P V I=$ Point of Vertical Intersection
$P V T=$ Point of Vertical Tangency
$g_{1}=$ Grade of Back Tangent
$x=$ Horizontal Distance from PVC
to Point on Curve
$x_{m}=$ Horizontal Distance to Min/Max Elevation on Curve $=-\frac{g_{1}}{2 a}=\frac{g_{1} L}{g_{1}-g_{2}}$
Tangent Elevation $=Y_{\mathrm{PVC}}+g_{1} x \quad$ and $\quad=Y_{\mathrm{PVI}}+g_{2}(x-L / 2)$
Curve Elevation $=Y_{\mathrm{PVC}}+g_{1} x+a x^{2}=Y_{\mathrm{PVC}}+g_{1} x+\left[\left(g_{2}-g_{1}\right) /(2 L)\right] x^{2}$

$$
y=a x^{2} \quad a=\frac{g_{2}-g_{1}}{2 L} \quad E=a\left(\frac{L}{2}\right)^{2} \quad r=\frac{g_{2}-g_{1}}{L}
$$

## CONSTRUCTION

Construction project scheduling and analysis questions may be based on either activity-on-node method or on activity-on-arrow method.

## CPM PRECEDENCE RELATIONSHIPS (ACTIVITY ON NODE)



Start-to-start: start of B depends on the start of $A$


Finish-to-finish: finish of B depends on the finish of $A$
depends on the finish of A
$g_{2}=$ Grade of Forward Tangent
$a=$ Parabola Constant
$y=$ Tangent Offset
$E=$ Tangent Offset at PVI
$r=$ Rate of Change of Grade


Finish-to-start: start of B depends on the finish of A

## HIGHWAY PAVEMENT DESIGN

| AASHTO Structural Number Equation |
| :---: |
| $S N=a_{1} D_{1}+a_{2} \mathrm{D}_{2}+\ldots+a_{n} D_{n}$, where |
| $S N=$ structural number for the pavement |
| $a_{i} \quad=$ layer coefficient and $D_{i}=$ thickness of layer (inches). |


| Gross Axle Load |  | Load Equivalency Factors |  | Gross Axle Load |  | Load Equivalency <br> Factors |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kN | lb | Single <br> Axles | Tandem <br> Axles | kN | lb | Single <br> Axles | Tandem Axles |
| 4.45 | 1,000 | 0.00002 |  | 187.0 | 42,000 | 25.64 | 2.51 |
| 8.9 | 2,000 | 0.00018 |  | 195.7 | 44,000 | 31.00 | 3.00 |
| 17.8 | 4,000 | 0.00209 |  | 200.0 | 45,000 | 34.00 | 3.27 |
| 22.25 | 5,000 | 0.00500 |  | 204.5 | 46,000 | 37.24 | 3.55 |
| 26.7 | $\mathbf{6 , 0 0 0}$ | 0.01043 |  | 213.5 | 48,000 | 44.50 | 4.17 |
| 35.6 | 8,000 | 0.0343 |  | 222.4 | 50,000 | 52.88 | 4.86 |
| 44.5 | 10,000 | 0.0877 | 0.00688 | 231.3 | 52,000 |  | 5.63 |
| 53.4 | 12,000 | 0.189 | 0.0144 | 240.2 | 54,000 |  | 6.47 |
| 62.3 | 14,000 | 0.360 | 0.0270 | 244.6 | 55,000 |  | 6.93 |
| 66.7 | 15,000 | 0.478 | 0.0360 | 249.0 | 56,000 |  | 7.41 |
| 71.2 | 16,000 | 0.623 | 0.0472 | 258.0 | 58,000 |  | 8.45 |
| 80.0 | 18,000 | 1.000 | 0.0773 | 267.0 | 60,000 |  | 9.59 |
| 89.0 | 20,000 | 1.51 | 0.1206 | 275.8 | 62,000 |  | 10.84 |
| 97.8 | 22,000 | 2.18 | 0.180 | 284.5 | 64,000 |  | 12.22 |
| 106.8 | 24,000 | 3.03 | 0.260 | 289.0 | 65,000 |  | 12.96 |
| 111.2 | 25,000 | 3.53 | 0.308 | 293.5 | 66,000 |  | 13.73 |
| 115.6 | 26,000 | 4.09 | 0.364 | 302.5 | 68,000 |  | 15.38 |
| 124.5 | 28,000 | 5.39 | 0.495 | 311.5 | 70,000 |  | 17.19 |
| 133.5 | 30,000 | 6.97 | 0.658 | 320.0 | 72,000 |  | 19.16 |
| 142.3 | 32,000 | 8.88 | 0.857 | 329.0 | 74,000 |  | 21.32 |
| 151.2 | 34,000 | 11.18 | 1.095 | 333.5 | 75,000 |  | 22.47 |
| 155.7 | 35,000 | 12.50 | 1.23 | 338.0 | 76,000 |  | 23.66 |
| 160.0 | 36,000 | 13.93 | 1.38 | 347.0 | 78,000 |  | 26.22 |
| 169.0 | 38,000 | 17.20 | 1.70 | 356.0 | 80,000 |  | 28.99 |
| 178.0 | 40,000 | 21.08 | 2.08 |  |  |  |  |
| Note: kN converted to lb are within 0.1 percent of lb shown. |  |  |  |  |  |  |  |

## EARTHWORK FORMULAS

Average End Area Formula, $\mathrm{V}=\mathrm{L}\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) / 2$
Prismoidal Formula, $\mathrm{V}=\mathrm{L}\left(\mathrm{A}_{1}+4 \mathrm{~A}_{\mathrm{m}}+\mathrm{A}_{2}\right) / 6$, where $\mathrm{A}_{\mathrm{m}}=$ area of mid-section
Pyramid or Cone, $\mathrm{V}=\mathrm{h}($ Area of Base) $/ 3$
where $\mathrm{L}=$ distance between $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$

## AREA FORMULAS

Area by Coordinates: Area $=\left[\mathrm{X}_{\mathrm{A}}\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{N}}\right)+\mathrm{X}_{\mathrm{B}}\left(\mathrm{Y}_{\mathrm{C}}-\mathrm{Y}_{\mathrm{A}}\right)+\mathrm{X}_{\mathrm{C}}\left(\mathrm{Y}_{\mathrm{D}}-\mathrm{Y}_{\mathrm{B}}\right)+\ldots+\mathrm{X}_{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{N}-1}\right)\right] / 2$

Trapezoidal Rule: Area $=w\left(\frac{h_{1}+h_{n}}{2}+h_{2}+h_{3}+h_{4}+\ldots+h_{n-1}\right) \quad w=$ common interval

Simpson's $1 / 3$ Rule: Area $=w\left[h_{1}+2\left(\sum_{k=3,5, \ldots}^{n-2} h_{k}\right)+4\left(\sum_{k=2,4, \ldots .}^{n-1} h_{k}\right)+h_{n}\right] / 3 \quad n$ must be odd number of measurements $w=$ common interval

## ENVIRONMENTAL ENGINEERING

For information about fluids, refer to the CIVIL ENGINEERING and FLUID MECHANICS sections.
For information about geohydrology and hydrology, refer to the CIVIL ENGINEERING section.
For information about ideal gas law equations, refer to the THERMODYNAMICS section.
For information about microbiology (biochemical pathways, cellular biology and organism characteristics), refer to the BIOLOGY section.
For information about population growth modeling, refer to the BIOLOGY section.
For information about sampling and monitoring (Student's t-Distribution, standard deviation, and confidence intervals), refer to the MATHEMATICS section.

## AIR POLLUTION

Activated carbon: refer to WATER TREATMENT in this section.
Air stripping: refer to WATER TREATMENT in this section.

## Atmospheric Dispersion Modeling (Gaussian)

$\sigma_{y}$ and $\sigma_{z}$ as a function of downwind distance and stability class, see following figures.

$$
\begin{aligned}
& C=\frac{Q}{2 \pi u \sigma_{y} \sigma_{z}} \exp \left(-\frac{1}{2} \frac{y^{2}}{\sigma_{y}^{2}}\right)\left[\exp \left(-\frac{1}{2} \frac{(z-H)^{2}}{\sigma_{z}^{2}}\right)\right. \\
&\left.+\exp \left(-\frac{1}{2} \frac{(z+H)^{2}}{\sigma_{z}^{2}}\right)\right]
\end{aligned}
$$

where

| $C=$ | steady-state concentration at a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ <br> $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$, |
| ---: | :--- |
| $Q=$ | emissions rate $(\mu \mathrm{g} / \mathrm{s})$, |
| $\sigma_{\mathrm{y}}=$ | horizontal dispersion parameter $(\mathrm{m})$, |
| $\sigma_{\mathrm{z}}=$ | vertical dispersion parameter $(\mathrm{m})$, |
| $\mathrm{u}=$ | average wind speed at stack height $(\mathrm{m} / \mathrm{s})$, |
| $y=$ | horizontal distance from plume centerline $(\mathrm{m})$, |
| $z=$ | vertical distance from ground level $(\mathrm{m})$, |
| $H=$ | effective stack height $(\mathrm{m})=\mathrm{h}+\Delta \mathrm{h}$ |
|  | where $h=$ physical stack height |
| $x=$ | $\Delta h=$ plume rise, and |
| downwind distance along plume centerline $(\mathrm{m})$. |  |
| Concentration downwind from elevated source |  |$\quad$| $C_{(\text {max })}=\frac{Q}{\pi u \sigma_{y} \sigma_{z}} \exp \left(-\frac{1}{2} \frac{\left(H^{2}\right)}{\sigma_{z}^{2}}\right)$ |
| ---: | :--- |

where variables as previous except $C_{(\max )}=$ maximum ground-level concentration. $\sigma_{z}=\frac{H}{\sqrt{2}}$ for neutral atmospheric conditions

Atmospheric Stability Under Various Conditions

| Surface Wind Speed ${ }^{\text {a }}$ (m/s) | Day <br> Solar Insolation |  |  | Night Cloudiness ${ }^{\text {e }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Strong ${ }^{\text {b }}$ | Moderate ${ }^{\text {c }}$ | Slight ${ }^{\text {d }}$ | Cloudy $(\geq 4 / 8)$ | $\begin{aligned} & \text { Clear } \\ & (\leq 3 / 8) \end{aligned}$ |
| <2 | A | $A-B^{f}$ | B | E | F |
| 2-3 | A-B | B | C | E | F |
| 3-5 | B | B-C | C | D | E |
| 5-6 | C | C-D | D | D | D |
| $>6$ | C | D | D | D | D |

Notes:
a. Surface wind speed is measured at 10 m above the ground.
b. Corresponds to clear summer day with sun higher than $60^{\circ}$ above the horizon.
c. Corresponds to a summer day with a few broken clouds, or a clear day with sun $35-60^{\circ}$ above the horizon.
d. Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15-35 ${ }^{\circ}$.
e. Cloudiness is defined as the fraction of sky covered by the clouds.
f. For A-B, B-C, or $\mathrm{C}-\mathrm{D}$ conditions, average the values obtained for each.

* $\mathrm{A}=$ Very unstable $\quad \mathrm{D}=$ Neutral
$\mathrm{B}=$ Moderately unstable $\quad \mathrm{E}=$ Slightly stable
$\mathrm{C}=$ Slightly unstable $\quad \mathrm{F}=$ Stable
Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.


VERTICAL STANDARD DEVIATIONS OF A PLUME


HORIZONTAL STANDARD DEVIATIONS OF A PLUME
A - EXTREMELY UNSTABLE
B - MODERATELY UNSTABLE
C SLIGHTLY UNSTABLE
D - NEUTRAL
E - SLIGHTLY Stable
F - MODERATELY STABLE


NOTE: Effective stack height shown on curves numerically.

$$
\left(\frac{C u}{Q}\right) \max =\mathrm{e}^{\left[a+b \ln H+c(\ln H)^{2}+d(\ln H)^{3}\right]}
$$

$H=$ effective stack height, stack height + plume rise, m

Values of Curve-Fit Constants for Estimating $(C u / Q)_{\text {max }}$ from $H$ as a Function of Atmospheric Stability

|  | Constants |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Stability | $a$ | $b$ | $c$ | $d$ |
| A | -1.0563 | -2.7153 | 0.1261 | 0 |
| B | -1.8060 | -2.1912 | 0.0389 | 0 |
| C | -1.9748 | -1.9980 | 0 | 0 |
| D | -2.5302 | -1.5610 | -0.0934 | 0 |
| E | -1.4496 | -2.5910 | 0.2181 | -0.0343 |
| F | -1.0488 | -3.2252 | 0.4977 | -0.0765 |
| Adapted from Ranchoux, R.J.P., 1976. |  |  |  |  |

Adapted from Ranchoux, R.J.P., 1976.

- Turner, D. B., "Workbook of Atmospheric Dispersion Estimates," Washington, DC, U.S. Environmental Protection Agency, 1970.


## Cyclone

## Cyclone Collection (Particle Removal) Efficiency

$$
\eta=\frac{1}{1+\left(d_{p c} / d_{p}\right)^{2}} \text {, where }
$$

$d_{p c}=$ diameter of particle collected with $50 \%$ efficiency,
$d_{p}=$ diameter of particle of interest, and
$\eta=$ fractional particle collection efficiency.

AIR POLLUTION CONTROL


Cyclone Effective Number of Turns Approximation
$N_{e}=\frac{1}{H}\left[L_{b}+\frac{L_{c}}{2}\right]$, where
$N_{e} \quad=$ number of effective turns gas makes in cyclone,
$H \quad=$ inlet height of cyclone (m),
$L_{b} \quad=$ length of body cyclone (m), and
$L_{c} \quad=$ length of cone of cyclone (m).
Cyclone 50\% Collection Efficiency for Particle Diameter

|  | $d_{p c}=\left[\frac{9 \mu W}{2 \pi N_{e} V_{i}\left(\rho_{p}-\rho_{g}\right)}\right]^{0.5}$, where |
| :---: | :---: |
| $d_{p c}$ | $=$ diameter of particle that is collected with $50 \%$ efficiency (m), |
| $\mu$ | $=$ viscosity of gas (kg/m•s), |
| W | $=$ inlet width of cyclone (m), |
| $N_{e}$ | $=$ number of effective turns gas makes in cyclone, |
| $V_{i}$ | $=$ inlet velocity into cyclone ( $\mathrm{m} / \mathrm{s}$ ), |
| $\rho_{p}$ | $=$ density of particle ( $\mathrm{kg} / \mathrm{m}^{3}$ ), and |
| $\rho_{g}$ | $=$ density of gas ( $\mathrm{kg} / \mathrm{m}^{3}$ ). |



## Cyclone Ratio of Dimensions to Body Diameter

| Dimension |  | High Efficiency | Conventional | High Throughput |
| :--- | :---: | :---: | :---: | :---: |
| Inlet height | H | 0.44 | 0.50 | 0.80 |
| Inlet width | W | 0.21 | 0.25 | 0.35 |
| Body length | $\mathrm{L}_{\mathrm{b}}$ | 1.40 | 1.75 | 1.70 |
| Cone length | $\mathrm{L}_{\mathrm{c}}$ | 2.50 | 2.00 | 2.00 |
| Vortex finder length | S | 0.50 | 0.60 | 0.85 |
| Gas exit diameter | $\mathrm{D}_{\mathrm{e}}$ | 0.40 | 0.50 | 0.75 |
| Dust outlet diameter | $\mathrm{D}_{\mathrm{d}}$ | 0.40 | 0.40 | 0.40 |

## Baghouse

| Air-to-Cloth Ratio for Baghouses Shaker/Woven |  |  |
| :---: | :---: | :---: |
|  | Reverse | Pulse |
| Dust | Air/Woven | Jet/Felt |
| alumina | 0.8 | 2.4 |
| asbestos | 0.9 | 3.0 |
| bauxite | 0.8 | 2.4 |
| carbon black | 0.5 | 1.5 |
| coal | 0.8 | 2.4 |
| cocoa | 0.8 | 3.7 |
| clay | 0.8 | 2.7 |
| cement | 0.6 | 2.4 |
| cosmetics | 0.5 | 3.0 |
| enamel frit | 0.8 | 2.7 |
| feeds, grain | 1.1 | 4.3 |
| feldspar | 0.7 | 2.7 |
| fertilizer | 0.9 | 2.4 |
| flour | 0.9 | 3.7 |
| fly ash | 0.8 | 1.5 |
| graphite | 0.6 | 1.5 |
| gypsum | 0.6 | 3.0 |
| iron ore | 0.9 | 3.4 |
| iron oxide | 0.8 | 2.1 |
| iron sulfate | 0.6 | 1.8 |
| lead oxide | 0.6 | 1.8 |
| leather dust | 1.1 | 3.7 |
| lime | 0.8 | 3.0 |
| limestone | 0.8 | 2.4 |
| mica | 0.8 | 2.7 |
| paint pigments | 0.8 | 2.1 |
| paper | 1.1 | 3.0 |
| plastics | 0.8 | 2.1 |
| quartz | 0.9 | 2.7 |
| rock dust | 0.9 | 2.7 |
| sand | 0.8 | 3.0 |
| sawdust (wood) | 1.1 | 3.7 |
| silica | 0.8 | 2.1 |
| slate | 1.1 | 3.7 |
| soap detergents | 0.6 | 1.5 |
| spices | 0.8 | 3.0 |
| starch | 0.9 | 2.4 |
| sugar | 0.6 | 2.1 |
| talc | 0.8 | 3.0 |
| tobacco | 1.1 | 4.0 |
| zinc oxide | 0.6 | 1.5 |

U.S. EPA OAQPS Control Cost Manual, 4th ed., EPA 450/3-90-006 (NTIS PB 90-169954), January 1990.

## Electrostatic Precipitator Efficiency

Deutsch-Anderson equation:
$\eta=1-\mathrm{e}^{(-W A / Q)}$, where
$\eta=$ fractional collection efficiency,
$W=$ terminal drift velocity,
$A=$ total collection area, and
$Q=$ volumetric gas flow rate.
Note that any consistent set of units can be used for $W_{\text {, }}$ $A$, and $Q$ (for example, $\mathrm{ft} / \mathrm{min}, \mathrm{ft}^{2}$, and $\mathrm{ft}^{3} / \mathrm{min}$ ).

## Incineration



DRE = destruction and removal efficiency (\%),
$W_{\text {in }} \quad=$ mass feed rate of a particular POHC (kg/h or lb/h), and
$W_{\text {out }} \quad=$ mass emission rate of the same POHC (kg/h or lb/h).
$\mathrm{CE}=\frac{\mathrm{CO}_{2}}{\mathrm{CO}_{2}+\mathrm{CO}} \times 100 \%$, where
$\mathrm{CO}_{2}=$ volume concentration (dry) of $\mathrm{CO}_{2}$ (parts per million, volume, $\mathrm{ppm}_{\mathrm{v}}$ ),
$\mathrm{CO}=$ volume concentration (dry) of $\mathrm{CO}\left(\mathrm{ppm}_{\mathrm{v}}\right)$,
$\mathrm{CE}=$ combustion efficiency, and
$\mathrm{POHC}=$ principal organic hazardous contaminant.

## FATE AND TRANSPORT

## Microbial Kinetics

BOD Exertion

$$
y_{t}=L\left(1-\mathrm{e}^{-k_{t} t}\right)
$$

where
$k_{1}=$ deoxygenation rate constant (base e, days ${ }^{-1}$ ),
$L=$ ultimate BOD ( $\mathrm{mg} / \mathrm{L}$ ),
$t=$ time (days), and
$y_{t}=$ the amount of BOD exerted at time $t(\mathrm{mg} / \mathrm{L})$.

## Stream Modeling: Streeter Phelps

$$
\begin{aligned}
& D=\frac{k_{1} L_{o}}{k_{2}-k_{1}}\left[\exp \left(-k_{1} t\right)-\exp \left(-k_{2} t\right)\right]+D_{o} \exp \left(-k_{2} t\right) \\
& t_{c}=\frac{1}{k_{2}-k_{1}} \ln \left[\frac{k_{2}}{k_{1}}\left(1-D_{o} \frac{\left(k_{2}-k_{1}\right)}{k_{1} L_{o}}\right)\right]
\end{aligned}
$$

$D O=D O_{\text {sat }}-D$, where
$D \quad=$ dissolved oxygen deficit ( $\mathrm{mg} / \mathrm{L}$ ),
$k_{1}=$ deoxygenation rate constant, base e $\left(\right.$ days $\left.^{-1}\right)$,
$t=$ time (days),
$k_{2}=$ reaeration rate, base e $\left(\right.$ days $\left.^{-1}\right)$,
$L_{o}=$ initial BOD ultimate in mixing zone ( $\mathrm{mg} / \mathrm{L}$ ),
$D_{o}=$ initial dissolved oxygen deficit in mixing zone (mg/L),
$t_{c}=$ time which corresponds with minimum dissolved oxygen (days),
$D O_{\text {sat }}=$ saturated dissolved oxygen concentration (mg/L), and
$D O=$ dissolved oxygen concentration ( $\mathrm{mg} / \mathrm{L}$ ).

## Monod Kinetics-Substrate Limited Growth

Continuous flow systems where growth is limited by one substrate (chemostat):

$$
\mu=\mu_{\max } \frac{S}{K_{s}+S}, \text { where }
$$

$\mu \quad=$ specific growth rate $\left(\mathrm{time}^{-1}\right)$,
$\mu_{\max }=$ maximum specific growth rate (time ${ }^{-1}$ ),
$S=$ concentration of substrate in solution (mass/unit volume), and
$K_{s} \quad=$ half-velocity constant $=$ half-saturation constant (i.e., substrate concentration at which the specific growth rate is one-half $\mu_{\max }$ ) (mass/unit volume).

- Monod growth rate constant as a function of limiting food concentration.


Multiple Limiting Substrates
$\frac{\mu}{\mu_{m}}=\left[\mu_{1}\left(S_{1}\right)\right]\left[\mu_{2}\left(S_{2}\right)\right]\left[\mu_{3}\left(S_{3}\right)\right] \ldots\left[\mu_{n}\left(S_{n}\right)\right]$
where $\mu_{i}=\frac{S_{i}}{K_{s i}+S_{i}}$ for $i=1$ to $n$
Non-steady State Continuous Flow
$\frac{d x}{d t}=D x_{o}+\left(\mu-k_{d}-D\right) x$
Steady State Continuous flow

$$
\mu=D \text { with } \mathrm{k}_{\mathrm{d}} \ll \mu
$$

Product production at steady state, single substrate limiting
$X_{1}=Y_{P / S}\left(S_{o}-S_{i}\right)$
where
$X_{1}=$ product (mg/L)
$\mu_{m}=$ maximum growth constant $\left(\mathrm{hr}^{-1}\right)$ when $x \gg S_{s}$, and
$K_{\mathrm{s}}=$ saturation constant on half-velocity constant [ $=$ concentration $(\mathrm{mg} / \mathrm{l})$ at $\mu_{m} / 2$ ].
$f=$ flow rate $\left(\mathrm{hr}^{-1}\right)$,
$V_{r}=$ culture volume (1),
$D=$ dilution rate (flow $\mathrm{f} /$ reactor volume $\mathrm{V}_{\mathrm{r}} ; \mathrm{hr}^{-1}$ ),
$\mu_{i}=$ growth rate with one or multiple limiting substrates $\left(\mathrm{hr}^{-1}\right)$,
$S_{i}=$ substrate $i$ concentration ( $\mathrm{mg} / \mathrm{l}$ ),
$S_{o}=$ initial substrate concentration (mg/l),
$Y_{P / S}=$ product yield per unit of substrate ( $\mathrm{mg} / \mathrm{mg}$ )
$p=$ product concentration ( $\mathrm{mg} / \mathrm{l}$ ).
$x=$ cell number ( $\mathrm{g} / \mathrm{l}$ ),
$x_{o}=$ initial cell number $(\mathrm{g} / \mathrm{l})$,
$t=$ time (hr)
$k_{d}=$ death rate $\left(\mathrm{hr}^{-1}\right)$

[^6]
## Partition Coefficients

## Bioconcentration Factor $B C F$

The amount of a chemical to accumulate in aquatic organisms.
$B C F=C_{\text {org }} / C$, where
$C_{\text {org }}=$ equilibrium concentration in organism $(\mathrm{mg} / \mathrm{kg}$ or ppm), and
$C=$ concentration in water ( ppm ).

## Octanol-Water Partition Coefficient

The ratio of a chemical's concentration in the octanol phase to its concentration in the aqueous phase of a two-phase octanol-water system.
$K_{\mathrm{ow}}=C_{\mathrm{o}} / C_{w}$, where
$C_{\mathrm{o}}=$ concentration of chemical in octanol phase (mg/L or $\mu \mathrm{g} / \mathrm{L}$ ) and
$C_{w}=$ concentration of chemical in aqueous phase (mg/L or $\mu \mathrm{g} / \mathrm{L}$ ).

## Organic Carbon Partition Coefficient $K_{o c}$

$$
K_{o c}=C_{\text {soil }} / C_{\text {water }}, \text { where }
$$

$C_{\text {soil }}=$ concentration of chemical in organic carbon component of soil ( $\mu \mathrm{g}$ adsorbed $/ \mathrm{kg}$ organic $C$, or ppb), and
$C_{\text {water }}=$ concentration of chemical in water ( ppb or $\mu \mathrm{g} / \mathrm{kg}$ )
$\underline{\text { Retardation Factor } R}$

$$
R=1+(\rho / \eta) K_{d}, \text { where }
$$

$\rho=$ bulk density,
$\eta=$ porosity, and
$K_{d}=$ distribution coefficient.

## Soil-Water Partition Coefficient $K_{\underline{s w}}=K_{\varrho}$

$K_{s w}=X / C$, where
$X=$ concentration of chemical in soil ( ppb or $\mu \mathrm{g} / \mathrm{kg}$ ), and
$C=$ concentration of chemical in water $(\mathrm{ppb}$ or $\mu \mathrm{g} / \mathrm{kg})$.
$K_{s w}=K_{o c} f_{o c}$, where
$f_{o c}=$ fraction of organic carbon in the soil (dimensionless).

## - Steady-State Reactor Parameters

Comparison of Steady-state Mean Retention Times for Decay Reactions of Different Order ${ }^{\text {a }}$

| Reaction Order | r | Equations for Mean Retention Times ( $\theta$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Ideal Batch | Ideal Plug Flow | Ideal CMFR |
| Zero ${ }^{\text {b }}$ | -k | $\frac{\mathrm{C}_{0}}{\mathrm{k}}$ | $\frac{\left(\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{t}}\right)}{\mathrm{k}}$ | $\frac{\left(\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{t}}\right)}{\mathrm{k}}$ |
| First | $-\mathrm{kC}$ | $\frac{1}{\mathrm{k}}$ | $\frac{\operatorname{In}\left(\mathrm{C}_{\mathrm{o}} / \mathrm{C}_{\mathrm{t}}\right)}{\mathrm{k}}$ | $\frac{\left(\mathrm{C}_{\mathrm{o}} / \mathrm{C}_{\mathrm{t}}\right)-1}{\mathrm{k}}$ |
| Second | $-2 \mathrm{kC}{ }^{2}$ | $\frac{1}{2 \mathrm{kC}_{\mathrm{o}}}$ | $\frac{\left(\mathrm{C}_{\mathrm{o}} / \mathrm{C}_{\mathrm{t}}\right)-1}{2 \mathrm{kC}_{\mathrm{o}}}$ | $\frac{\left(\mathrm{C}_{\mathrm{o}} / \mathrm{C}_{\mathrm{t}}\right)-1}{2 \mathrm{kC}_{\mathrm{t}}}$ |

${ }^{\mathrm{a}} \mathrm{C}_{\mathrm{o}}=$ initial concentration or influent concentration; $\mathrm{C}_{\mathrm{t}}=$ final condition or effluent concentration.
${ }^{\mathrm{b}}$ Expressions are valid for $\mathrm{k} \theta \leq \mathrm{C}_{0}$;otherwise $\mathrm{C}_{\mathrm{t}}=0$.
Comparison of Steady-State Performance for Decay Reactions of Different Order ${ }^{\text {a }}$

| Reaction Order | r | Equations for $\mathrm{C}_{\mathbf{t}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Ideal Batch | Ideal Plug Flow | Ideal CMFR |
| Zero ${ }^{\text {b }} \mathrm{t} \leq \mathrm{C}_{0} / \mathrm{k}$ | -k | $\mathrm{C}_{0}-\mathrm{kt}$ | $\mathrm{C}_{\mathrm{o}}-\mathrm{k} \theta$ | $\mathrm{C}_{\mathrm{o}}-\mathrm{k} \theta$ |
| $\mathrm{t}>\mathrm{C}_{0} / \mathrm{k}$ |  | 0 |  |  |
| First | -kC | $\mathrm{C}_{\mathrm{o}}[\exp (-\mathrm{kt})]$ | $\mathrm{C}_{\mathrm{o}}[\exp (-\mathrm{k} \theta)]$ | $\frac{\mathrm{C}_{\mathrm{o}}}{1+\mathrm{k} \theta}$ |
| Second | $-2 \mathrm{kC}{ }^{2}$ | $\frac{C_{0}}{1+2 k t C_{o}}$ | $\frac{\mathrm{C}_{\mathrm{o}}}{1+2 \mathrm{k} \theta \mathrm{C}_{\mathrm{o}}}$ | $\frac{\left(8 \mathrm{k} \theta \mathrm{C}_{\mathrm{o}}+1\right)^{1 / 2}-1}{4 \mathrm{k} \theta}$ |
| ${ }^{a} C_{o}=$ initial concentration or influent concentration; $C_{t}=$ final condition or effluent concentration. ${ }^{\mathrm{b}}$ Time conditions are for ideal batch reactor only. |  |  |  |  |

- Davis, M.L. and S.J. Masten, Principles of Environmental Engineering and Science, McGraw-Hill, 2004.


## LANDFILL

## Break-Through Time for Leachate to Penetrate a Clay Liner

$$
t=\frac{d^{2} \eta}{K(d+h)} \text {, where }
$$

$t=$ breakthrough time (yr),
$d$ = thickness of clay liner ( ft ),
$\eta=$ porosity,
$K=$ coefficient of permeability ( $\mathrm{ft} / \mathrm{yr}$ ), and
$h=$ hydraulic head (ft).
Typical porosity values for clays with a coefficient of permeability in the range of $10^{-6}$ to $10^{-8} \mathrm{~cm} / \mathrm{s}$ vary from 0.1 to 0.3 .

## Effect of Overburden Pressure

$$
S W_{p}=S W_{i}+\frac{p}{a+b p}
$$

where
$S W_{p}=$ specific weight of the waste material at pressure $p$ ( $\mathrm{lb} / \mathrm{yd}^{3}$ ) (typical 1,750 to 2,150),
$S W_{i}=$ initial compacted specific weight of waste (lb/yd ${ }^{3}$ ) (typical 1,000),
$p=$ overburden pressure ( $\mathrm{lb} / \mathrm{in}^{2}$ ),
$a=$ empirical constant $\left(\mathrm{yd}^{3} / \mathrm{lb}\right)\left(\mathrm{lb} / \mathrm{in}^{2}\right)$, and
$b=$ empirical constant $\left(\mathrm{yd}^{3} / \mathrm{lb}\right)$.

## Gas Flux

$$
N_{A}=\frac{D \eta^{4 / 3}\left(C_{A_{a m n}}-C_{A_{f u l}}\right)}{L} \text {, where }
$$

$N_{A}=$ gas flux of compound $\left.A, \mathrm{~g} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\left[\mathrm{lb} \cdot \mathrm{mol} / \mathrm{ft}^{2} \cdot \mathrm{~d}\right)\right]$,
$C_{A_{a m m}}=$ concentration of compound $A$ at the surface of the landfill cover, $\mathrm{g} / \mathrm{cm}^{3}\left(\mathrm{lb} \cdot \mathrm{mol} / \mathrm{ft}^{3}\right)$,
$C_{A_{f l l}}=$ concentration of compound $A$ at the bottom of the landfill cover, $\mathrm{g} / \mathrm{cm}^{3}\left(\mathrm{lb} \cdot \mathrm{mol} / \mathrm{ft}^{3}\right)$, and
$L \quad=$ depth of the landfill cover, $\mathrm{cm}(\mathrm{ft})$.
Typical values for the coefficient of diffusion for methane and carbon dioxide are $0.20 \mathrm{~cm}^{2} / \mathrm{s}\left(18.6 \mathrm{ft}^{2} / \mathrm{d}\right)$ and 0.13 $\mathrm{cm}^{2} / \mathrm{s}\left(12.1 \mathrm{ft}^{2} / \mathrm{d}\right)$, respectively.
$D=$ diffusion coefficient, $\mathrm{cm}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{d}\right)$,
$\eta_{\text {gas }}=$ gas-filled porosity, $\mathrm{cm}^{3} / \mathrm{cm}^{3}\left(\mathrm{ft}^{3} / \mathrm{ft}^{3}\right)$, and
$\eta=$ porosity, $\mathrm{cm}^{3} / \mathrm{cm}^{3}\left(\mathrm{ft}^{3} / \mathrm{ft}^{3}\right)$

## Soil Landfill Cover Water Balance

$\Delta S_{\mathrm{LC}}=P-R-\mathrm{ET}-\mathrm{PER}_{\mathrm{sw}}$, where
$\Delta S_{\mathrm{LC}}=$ change in the amount of water held in storage in a unit volume of landfill cover (in.),
$P \quad=$ amount of precipitation per unit area (in.),
$R \quad=$ amount of runoff per unit area (in.),
ET = amount of water lost through evapotranspiration per unit area (in.), and
$\mathrm{PER}_{\text {sw }}=$ amount of water percolating through the unit area of landfill cover into compacted solid waste (in.).

## NOISE POLLUTION

$\operatorname{SPL}(\mathrm{dB})=10 \log _{10}\left(P^{2} / P_{o}^{2}\right)$
$\mathrm{SPL}_{\text {total }}=10 \log _{10} \Sigma 10^{\mathrm{SPL} / 10}$
Point Source Attenuation
$\Delta \operatorname{SPL}(\mathrm{dB})=10 \log _{10}\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{2}$
Line Source Attenuation
$\Delta \operatorname{SPL}(\mathrm{dB})=10 \log _{10}\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)$
where
SPL $(\mathrm{dB})=$ sound pressure level, measured in decibels
$\mathrm{P} \quad=$ sound pressure $(\mathrm{Pa})$
$\mathrm{P}_{0} \quad=$ reference sound pressure $\left(2 \times 10^{-5} \mathrm{~Pa}\right)$
$\mathrm{SPL}_{\text {total }}=$ sum of multiple sources
$\Delta \mathrm{SPL}(\mathrm{dB})=$ change in sound pressure level with distance
$r_{1} \quad=$ distance from source to receptor at point 1
$\mathrm{r}_{2} \quad=$ distance from source to receptor at point 2

## POPULATION MODELING

## Population Projection Equations

Linear Projection $=$ Algebraic Projection
$P_{T}=P_{0}+k \Delta t$, where
$P_{T}=$ population at time T,
$P_{0}=$ population at time zero,
$k=$ growth rate, and
$\Delta t=$ elapsed time in years relative to time zero.
Log Growth $=$ Exponential Growth $=$ Geometric Growth $P_{T}=P_{0} \mathrm{e}^{\mathrm{k} \Delta \mathrm{t}}$
$\ln P_{T}=\ln P_{0}+k \Delta t$, where
$P_{T}=$ population at time $T$,
$P_{0}=$ population at time zero,
$k=$ growth rate, and
$\Delta t=$ elapsed time in years relative to time zero.

## RADIATION

## Effective half-life

Effective half-life, $\tau_{\mathrm{e}}$, is the combined radioactive and biological half-life.
$\frac{1}{\tau_{e}}=\frac{1}{\tau_{r}}+\frac{1}{\tau_{b}}$
where
$\tau_{r}=$ radioactive half-life
$\tau_{b}=$ biological half-life

## Half-Life

$$
N=N_{o} \mathrm{e}^{-0.693 t / \tau} \text {, where }
$$

$N_{o}=$ original number of atoms,
$N=$ final number of atoms,
$t=$ time, and
$\tau=$ half-life.
Flux at distance $2=($ Flux at distance 1$)\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{2}$
The half-life of a biologically degraded contaminant assuming a first-order rate constant is given by .
$t_{1 / 2}=\frac{0.693}{\mathrm{k}}$
$\mathrm{k}=$ rate constant (time ${ }^{-1}$ )
$\mathrm{t}_{1 / 2}=$ half-life (time)

## Ionizing Radiation Equations

Daughter Product Activity

$$
\mathrm{N}_{2}=\frac{\lambda_{1} \mathrm{~N}_{10}}{\lambda_{2}-\lambda_{1}}\left(\mathrm{e}^{-\lambda_{1} \mathrm{t}}-\mathrm{e}^{-\lambda_{2} \mathrm{t}}\right)
$$

where $\lambda_{1,2}=$ decay constants (time ${ }^{-1}$ )
$\mathrm{N}_{10}=$ initial activity of parent nuclei
t = time
Daughter Product Maximum Activity Time

$$
\mathrm{t}^{\prime}=\frac{\ln \lambda_{2}-\ln \lambda_{1}}{\lambda_{2}-\lambda_{1}}
$$

Inverse Square Law

$$
\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\left(\mathrm{R}_{2}\right)^{2}}{\left(\mathrm{R}_{1}\right)^{2}}
$$

where $I_{1,2}=$ Radiation intensity at locations 1 and 2
$\mathrm{R}_{1,2}=$ Distance from the source at locations 1 and 2

## SAMPLING AND MONITORING

## Data Quality Objectives (DQO) for Sampling Soils and Solids

| Investigation Type | Confidence <br> Level (1- $\alpha$ ) (\%) | Power (1- $\boldsymbol{\beta}$ ) (\%) | Minimum Detectable Relative <br> Difference (\%) |
| :--- | :---: | :---: | :---: |
| Preliminary site investigation | $70-80$ | $90-95$ | $10-30$ |
| Emergency clean-up | $80-90$ | $90-95$ | $10-20$ |
| Planned removal and <br> remedial response operations | $90-95$ | $90-95$ | $10-20$ |

EPA Document "EPA/600/8-89/046" Soil Sampling Quality Assurance User's Guide, Chapter 7.
Confidence level: $1-$ (Probability of a Type I Error) $=1-\alpha=$ size probability of not making a Type I error
Power $=1-($ Probability of a Type II error $)=1-\beta=$ probability of not making a Type II error.
$\mathrm{CV}=(100 * \mathrm{~s}) / \overline{\mathrm{x}}$
$\mathrm{CV}=$ coefficient of variation
$\mathrm{s}=$ standard deviation of sample
$\overline{\mathrm{x}}=$ sample average
Minimum Detectable Relative Difference $=$ Relative increase over background $\left[100\left(\mu_{\mathrm{s}}-\mu_{\mathrm{B}}\right) / \mu_{\mathrm{B}}\right]$ to be detectable with a probability ( $1-\beta$ )

Number of samples required in a one-sided one-sample t-test to achieve a minimum detectable relative difference at confidence level $(1-\alpha)$ and power of $(1-\beta)$


## RISK ASSESSMENT

## Hazard Assessment

The fire/hazard diamond below summarizes common hazard data available on the MSDS and is frequently shown on chemical labels.


Position A - Hazard (Blue)
$0=$ ordinary combustible hazard
$1=$ slightly hazardous
$2=$ hazardous
3 = extreme danger
$4=$ deadly
Position B - Flammability (Red)
$0=$ will not burn
$1=$ will ignite if preheated
$2=$ will ignite if moderately heated
$3=$ will ignite at most ambient temperature
$4=$ burns readily at ambient conditions
Position C-Reactivity (Yellow)
$0=$ stable and not reactive with water
$1=$ unstable if heated
$2=$ violent chemical change
$3=$ shock short may detonate
$4=$ may detonate
Position D - (White)
$\begin{array}{ll}\text { OXY } & =\text { oxidizer } \\ \text { ACID } & =\text { acid } \\ \text { ALKALI } & =\text { alkali } \\ \text { Cor } & =\text { corrosive } \\ \text { W } & \text { use no water } \\ \text { V.ワ } & =\text { radiation hazard }\end{array}$

## Flammable

Describes any solid, liquid, vapor, or gas that will ignite easily and burn rapidly. A flammable liquid is defined by NFPA and DOT as a liquid with a flash point below $100^{\circ} \mathrm{F}$ ( $38^{\circ} \mathrm{C}$ ).

## Material Safety Data Sheets (MSDS)

The MSDS indicates chemical source, composition, hazards and health effects, first aid, fire-fighting precautions, accidental-release measures, handling and storage, exposure controls and personal protection, physical and chemical properties, stability and reactivity, toxicological information, ecological hazards, disposal, transport, and other regulatory information.
The MSDS forms for all chemical compounds brought on site should be filed by a designated site safety officer. The MSDS form is provided by the supplier or must be developed when new chemicals are synthesized.

## Exposure Limits for Selected Compounds

| N | Allowable Workplace <br> Exposure Level $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$ | Chemical (use) |
| :---: | :---: | :--- |
| 1 | 0.1 | Iodine |
| 2 | 5 | Aspirin |
| 3 | 10 | Vegetable oil mists (cooking oil) <br> $1,1,2-T r i c h l o r o e t h a n e ~$ |
| 4 | 55 | (solvent/degreaser) |
| 5 | 188 | Perchloroethylene <br> (dry-cleaning fluid) <br> Toluene (organic solvent) |
| 6 | 170 | Trichloroethylene <br> (solvent/degreaser) <br> 7 |
| 8 | 269 | Tetrahydrofuran <br> (organic solvent) <br> Gasoline (fuel) |
| 9 | 890 | 1,590 |
| 10 | 1,910 | Naphtha (rubber solvent) <br> $1,1,1-T r i c h l o r o e t h a n e ~$ <br> (solvent/degreaser) |

## HAZARDOUS WASTE COMPATIBILITY CHART



## Risk

Risk characterization estimates the probability of adverse incidence occurring under conditions identified during exposure assessment.

## Carcinogens

For carcinogens the added risk of cancer is calculated as follows:
Risk $=$ dose $\times$ toxicity $=$ daily dose $\times$ CSF
Risk assessment process


## Noncarcinogens



Dose is expressed as the mass intake of the chemical normalized to the body weight of the exposed individual and the time period of exposure.
NOAEL $=$ No Observable Adverse Effect Level. The dose below which there are no harmful effects.
CSF $=$ Cancer Slope Factor. Determined from the dose-response curve for carcinogenic materials.

For noncarcinogens, a hazard index (HI) is calculated as follows:

$$
\mathrm{HI}=\text { chronic daily intake/RfD }
$$

## Reference Dose

Reference dose (RfD) is determined from the Noncarcinogenic Dose-Response Curve Using NOAEL
$R f D=\frac{N O A E L}{U F}$
and
$S H D=R f D * W=\frac{N O A E L * W}{U F}$
where
SHD = safe human dose (mg/day)
NOAEL = threshold dose per kg test animal ( $\mathrm{mg} / \mathrm{kg}$-day) from the dose response curve.
UF = the total uncertainty factor, depending on nature and reliability of the animal test data
$W \quad=$ the weight of the adult male (typically 70 kg )

## Exposure

Residential Exposure Equations for Various Pathways
Ingestion in drinking water
$\mathrm{CDI}=(\mathrm{CW})(\mathrm{IR})(\mathrm{EF})(\mathrm{ED})$
(BW)(AT)
Ingestion while swimming
$\mathrm{CDI}=(\mathrm{CW})(\mathrm{CR})(\mathrm{ET})(\mathrm{EF})(\mathrm{ED})$
(BW)(AT)
Dermal contact with water
$\mathrm{AD}=(\mathrm{CW})(\mathrm{SA})(\mathrm{PC})(\mathrm{ET})(\mathrm{EF})(\mathrm{ED})(\mathrm{CF})$
(BW)(AT)
Ingestion of chemicals in soil
$\mathrm{CDI}=\underline{(\mathrm{CS})(\mathrm{IR})(\mathrm{CF})(\mathrm{FI})(\mathrm{EF})(\mathrm{ED})}$
(BW)(AT)
Dermal contact with soil
$\mathrm{AD}=(\mathrm{CS})(\mathrm{CF})(\mathrm{SA})(\mathrm{AF})(\mathrm{ABS})(\mathrm{EF})(\mathrm{ED})$
(BW)(AT)
Inhalation of airborne (vapor phase) chemicals ${ }^{a}$
$\mathrm{CDI}=(\mathrm{CA})(\mathrm{IR})(\mathrm{ET})(\mathrm{EF})(\mathrm{ED})$
(BW)(AT)
Ingestion of contaminated fruits, vegetables, fish and shellfish
$\mathrm{CDI}=(\mathrm{CF})(\mathrm{IR})(\mathrm{FI})(\mathrm{EF})(\mathrm{ED})$
(BW)(AT)
where $\mathrm{ABS}=$ absorption factor for soil contaminant (unitless)
$\mathrm{AD}=$ absorbed dose (mg/[kg•day])
AF $=$ soil-to-skin adherence factor $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$
AT = averaging time (days)
BW = body weight (kg)
$\mathrm{CA}=$ contaminant concentration in air $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
CDI $=$ chronic daily intake ( $\mathrm{mg} /[\mathrm{kg} \cdot d \mathrm{day}$ )
CF = volumetric conversion factor for water
$=1 \mathrm{~L} / 1,000 \mathrm{~cm}^{3}$
$=$ conversion factor for soil $=10^{-6} \mathrm{~kg} / \mathrm{mg}$
CR = contact rate (L/hr)
CS = chemical concentration in soil ( $\mathrm{mg} / \mathrm{kg}$ )
$\mathrm{CW}=$ chemical concentration in water $(\mathrm{mg} / \mathrm{L})$
ED = exposure duration (years)
EF = exposure frequency (days/yr or events/year)
ET = exposure time (hr/day or hr/event)
FI = fraction ingested (unitless)
IR = ingestion rate (L/day or mg soil/day or $\mathrm{kg} /$ meal )
$=$ inhalation rate $\left(\mathrm{m}^{3} / \mathrm{hr}\right)$
PC = chemical-specific dermal permeability constant (cm/hr)
SA $=$ skin surface area available for contact $\left(\mathrm{cm}^{2}\right)$

Risk Assessment Guidance for Superfund. Volume 1, Human Health Evaluation Manual (part A). U.S. Environmental Protection Agency, EPA/540/1-89/002, 1989.


## Intake Rates

EPA Recommended Values for Estimating Intake

| Parameter | Standard Value |
| :---: | :---: |
| Average body weight, adult | 70 kg |
| Average body weight, child ${ }^{a}$ |  |
| $0-1.5$ years | 10 kg |
| 1.5-5 years | 14 kg |
| 5-12 years | 26 kg |
| Amount of water ingested daily, adult | 2 L |
| Amount of water ingested daily, child | 1 L |
| Amount of air breathed daily, adult | $20 \mathrm{~m}^{3}$ |
| Amount of air breathed daily, child | $5 \mathrm{~m}^{3}$ |
| Amount of fish consumed daily, adult | $6.5 \mathrm{~g} /$ day |
| Contact rate, swimming | $50 \mathrm{~mL} / \mathrm{hr}$ |
| Inhalation rates |  |
| adult (6-hr day) | $0.98 \mathrm{~m}^{3} / \mathrm{hr}$ |
| adult (2-hr day) | $1.47 \mathrm{~m}^{3} / \mathrm{hr}$ |
| child | $0.46 \mathrm{~m}^{3} / \mathrm{hr}$ |
| Skin surface available, adult male | $1.94 \mathrm{~m}^{2}$ |
| Skin surface available, adult female | $1.69 \mathrm{~m}^{2}$ |
| Skin surface available, child |  |
| 3-6 years (average for male and female) | $0.720 \mathrm{~m}^{2}$ |
| 6-9 years (average for male and female) | $0.925 \mathrm{~m}^{2}$ |
| $9-12$ years (average for male and female) | $1.16 \mathrm{~m}^{2}$ |
| 12-15 years (average for male and female) | $1.49 \mathrm{~m}^{2}$ |
| 15-18 years (female) | $1.60 \mathrm{~m}^{2}$ |
| 15-18 years (male) | $1.75 \mathrm{~m}^{2}$ |
| Soil ingestion rate, children 1-6 years | $200 \mathrm{mg} /$ day |
| Soil ingestion rate, persons $>6$ years | $100 \mathrm{mg} /$ day |
| Skin adherence factor, potting soil to hands | $1.45 \mathrm{mg} / \mathrm{cm}^{2}$ |
| Skin adherence factor, kaolin clay to hands | $2.77 \mathrm{mg} / \mathrm{cm}^{2}$ |
| Exposure duration |  |
| Lifetime (carcinogens, for non-carcinogens use actual exposure duration) | 70 years |
| At one residence, 90th percentile | 30 years |
| National median | 5 years |
| Averaging time | (ED)(365 days/year) |
| Exposure frequency (EF) |  |
| Swimming | 7 days/year |
| Eating fish and shellfish | 48 days/year |
| Exposure time (ET) |  |
| Shower, 90th percentile | 12 min |
| Shower, 50th percentile | 7 min |

[^7]
## TOXICOLOGY

## Dose-Response Curves

The dose-response curve relates toxic response (i.e., percentage of test population exhibiting a specified symptom or dying) to the logarithm of the dosage (i.e., mg/kg-day ingested). A typical dose-response curve is shown below.

$L C_{50}$
Median lethal concentration in air that, based on laboratory tests, is expected to kill $50 \%$ of a group of test animals when administered as a single exposure over one or four hours.

## $L D_{50}$

Median lethal dose 50. A single dose of a material that, based on laboratory tests, is expected to kill $50 \%$ of a group of test animals, usually by oral or skin exposure.
Similar definitions exist for $L C_{10}$ and $L D_{10}$, where the corresponding percentages are $10 \%$.

## - Comparative Acutely Lethal Doses

| Actual <br> Ranking <br> No. | $\mathrm{LD}_{50}(\mathrm{mg} / \mathrm{kg})$ | Toxic Chemical |
| :--- | :--- | :--- |
| 1 | 15,000 | PCBs |
| 2 | 10,000 | Alcohol (ethanol) |
| 3 | 4,000 | Table salt-sodium chloride |
| 4 | 1,500 | Ferrous sulfate-an iron |
| 5 | 1,375 | supplement |
| 6 | 900 | Malathion-pesticide |
| 7 | 150 | Morphine |
| 8 | 142 | Phenobarbital-a sedative |
| 9 | 2 | Tylenol (acetaminophen) |
| 10 | 1 | Strychnine-a rat poison |
| 11 | 0.5 | Nicotine |
| 12 | 0.001 | Curare-an arrow poison |
| 13 | 0.00001 | $2,3,7,8-T C D D$ (dioxin) |

Sequential absorption-disposition-interaction of foreign compounds with humans and animals.


- Selected Chemical Interaction Effects

| Effect | Relative toxicity <br> (hypothetical) | Example |
| :--- | :--- | :--- |
| Additive | $2+3=5$ | Organophosphate <br> pesticides |
| Synergistic | $2+3=20$ | Cigarette smoking <br> + asbestos |
| Antagonistic | $6+6=8$ | Toluene + <br> benzene or <br> caffeine + alcohol |

[^8]
## WASTEWATER TREATMENT AND TECHNOLOGIES

## Activated Sludge

$$
X_{A}=\frac{\theta_{c} Y\left(S_{o}-S_{e}\right)}{\theta\left(1+k_{d} \theta_{c}\right)} \text {, where }
$$

$X_{A}=$ biomass concentration in aeration tank (MLSS or MLVSS $\mathrm{kg} / \mathrm{m}^{3}$ );
$S_{o}=$ influent BOD or COD concentration $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$;
$S_{e}=$ effluent BOD or COD concentration ( $\mathrm{kg} / \mathrm{m}^{3}$ );
$k_{d}=$ microbial death ratio; kinetic constant; day ${ }^{-1}$; typical range $0.1-0.01$, typical domestic wastewater value $=0.05 \mathrm{day}^{-1}$;
$Y=$ yield coefficient Kg biomass $/ \mathrm{Kg}$ BOD consumed; range $0.4-1.2$; and
$\theta=$ hydraulic residence time $=\mathrm{Vol} / \mathrm{Q}$
$\theta_{c}=$ Solids residence time $=\frac{V o l X_{A}}{Q_{w} X_{w}+Q_{e} X_{e}}$
Vol $_{s}=$ Sludge volume/day: $Q_{s}=\frac{M(100)}{\rho_{s}(\% \text { solids })}$
Solids loading rate $=Q X / A$
For activated sludge secondary clarifier $Q=Q_{\mathrm{o}}+Q_{R}$
Organic loading rate (volumetric) $=Q_{o} S_{o} / \mathrm{Vol}$
Organic loading rate (F:M) $=Q_{o} S_{o} /\left(\operatorname{Vol}_{A}\right)$
Organic loading rate (surface area) $=Q_{o} S_{o} / A_{M}$
$\mathrm{SVI}=\frac{\text { Sludge volume after settling }(\mathrm{mL} / \mathrm{L}) * 1,000}{\operatorname{MLSS}(\mathrm{mg} / \mathrm{L})}$

Steady State Mass Balance around Secondary Clarifier:

$$
\left(Q_{\mathrm{o}}+\mathrm{Q}_{R}\right) X_{A}=Q_{e} X_{e}+\mathrm{Q}_{R} X_{w}+Q_{w} X_{w}
$$

$A=$ surface area of unit,
$A_{M}=$ surface area of media in fixed-film reactor,
$A_{x}=$ cross-sectional area of channel,
$M=$ sludge production rate (dry weight basis),
$Q_{o}=$ flow rate, influent
$Q_{e}=$ effluent flow rate,
$Q_{w}=$ waste sludge flow rate,
$\rho_{s}=$ wet sludge density,
$R=$ recycle ratio $=Q_{R} / Q_{o}$
$Q_{R}=$ recycle flow rate $=Q_{o} R$,
$X_{e}=$ effluent suspended solids concentration,
$X_{w}=$ waste sludge suspended solids concentration,
Vol $=$ aeration basin volume,
$Q=$ flow rate.

DESIGN AND OPERATIONAL PARAMETERS FOR ACTIVATED-SLUDGE TREATMENT OF MUNICIPAL WASTEWATER

| Type of Process | Mean cell residence time $\left(\theta_{c}, \mathrm{~d}\right)$ | Food-to-mass ratio ( $\mathrm{kg} \mathrm{BOD}_{5} / \mathrm{kg}$ MLSS) | $\begin{gathered} \text { Volumetric } \\ \text { loading } \\ (\text { Vol-kg } \\ \left.\mathrm{BOD}_{5} / \mathrm{m}^{3}\right) \end{gathered}$ | Hydraulic residence time in aeration basin $(\theta, \mathrm{h})$ | Mixed liquor suspended solids (MLSS, $\mathrm{mg} / \mathrm{L}$ ) | Recycle ratio $\left(Q_{r} / Q\right)$ | Flow regime* | $\mathrm{BOD}_{5}$ removal efficiency (\%) | Air supplied $\begin{aligned} & \left(\mathrm{m}^{3} / \mathrm{kg}\right. \\ & \left.\mathrm{BOD}_{5}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tapered aeration | 5-15 | 0.2-0.4 | 0.3-0.6 | 4-8 | 1,500-3,000 | 0.25-0.5 | PF | 85-95 | 45-90 |
| Conventional | 4-15 | 0.2-0.4 | 0.3-0.6 | 4-8 | 1,500-3,000 | $0.25-0.5$ | PF | 85-95 | 45-90 |
| Step aeration | 4-15 | 0.2-0.4 | 0.6-1.0 | 3-5 | 2,000-3,500 | 0.25-0.75 | PF | 85-95 | 45-90 |
| Completely mixed | 4-15 | 0.2-0.4 | 0.8-2.0 | 3-5 | 3,000-6,000 | 0.25-1.0 | CM | 85-95 | 45-90 |
| Contact stabilization | 4-15 | 0.2-0.6 | $1.0-1.2$ |  |  | 0.25-1.0 |  |  | 45-90 |
| Contact basin |  |  |  | 0.5-1.0 | 1,000-3,000 |  | PF | 80-90 |  |
| Stabilization basin |  |  |  | 4-6 | 4,000-10,000 |  | PF |  |  |
| High-rate aeration | 4-15 | 0.4-1.5 | 1.6-16 | 0.5-2.0 | 4,000-10,000 | $1.0-5.0$ | CM | 75-90 | 25-45 |
| Pure oxygen | 8-20 | 0.2-1.0 | 1.6-4 | 1-3 | 6,000-8,000 | 0.25-0.5 | CM | 85-95 |  |
| Extended aeration | 20-30 | 0.05-0.15 | 0.16-0.40 | 18-24 | 3,000-6,000 | 0.75-1.50 | CM | 75-90 | 90-125 |

[^9]- Aerobic Digestion

| Design criteria for aerobic digesters ${ }^{\boldsymbol{a}}$ |  |
| :--- | ---: |
| Parameter | Value |
| Hydraulic retention time, $20^{\circ} \mathrm{C}, \mathrm{d}^{b}$ |  |
| Waste activated sludge only | $10-15$ |
| Activated sludge from plant without primary settling | $12-18$ |
| Primary plus waste activated or trickling-filter sludge ${ }^{c}$ | $15-20$ |
| Solids loading, lb volatile solids $/ \mathrm{ft}^{3} \cdot \mathrm{~d}$ | $0.1-0.3$ |
| ${\text { Oxygen requirements, } 1 \mathrm{~b} \mathrm{O}_{2} / \mathrm{lb} \text { solids destroyed }}^{\text {Cell tissue }^{d}}$ |  |
| $\mathrm{BOD}_{5}$ in primary sludge | $\sim 2.3$ |
| Energy requirements for mixing | $1.6-1.9$ |
| Mechanical aerators, $\mathrm{hp} / 10^{3} \mathrm{ft}^{3}$ |  |
| Diffused-air mixing, $\mathrm{ft}^{3} / 10^{3} \mathrm{ft}^{3} \cdot \mathrm{~min}$ | $0.7-1.50$ |
| Dissolved-oxygen residual in liquid, $\mathrm{mg} / \mathrm{L}$ | $20-40$ |
| Reduction in volatile suspended solids, $\%$ | $1-2$ |

${ }^{a}$ Adapted in part from Ref. 59
${ }^{b}$ Detention times should be increased for operating temperatures below $20^{\circ} \mathrm{C}$.
${ }^{c}$ Similar detention times are used for primary sludge alone.
${ }^{d}$ Ammonia produced during carbonaceous oxidation oxidized to nitrate (see Eq. 12-11).
Note: $\quad \mathrm{bb} / \mathrm{ft}^{3} \cdot \mathrm{~d} \times 16.0185=\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$
$\mathrm{hp} / 10^{3} \mathrm{ft}^{3} \times 26.3342=\mathrm{kW} / 10^{3} \mathrm{~m}^{3}$
$\mathrm{ft}^{3} / 10^{3} \mathrm{ft}^{3} \cdot \mathrm{~min} \times 0.001=\mathrm{m}^{3} / \mathrm{m}^{3} \cdot \mathrm{~min}$
$0.556\left({ }^{\circ} \mathrm{F}-32\right) \quad={ }^{\circ} \mathrm{C}$

## Tank Volume

Vol $=\frac{Q_{i}\left(X_{i}+F S_{i}\right)}{X_{d}\left(K_{d} P_{v}+1 / \theta_{c}\right)}$, where
Vol $=$ volume of aerobic digester $\left(\mathrm{ft}^{3}\right)$,
$Q_{i}=$ influent average flowrate to digester $\left(\mathrm{ft}^{3} / \mathrm{d}\right)$,
$X_{i}=$ influent suspended solids ( $\mathrm{mg} / \mathrm{L}$ ),
$F=$ fraction of the influent $\mathrm{BOD}_{5}$ consisting of raw primary sludge (expressed as a decimal),
$S_{i}=$ influent $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{L})$,
$X_{d}=$ digester suspended solids (mg/L),
$K_{d}=$ reaction-rate constant $\left(\mathrm{d}^{-1}\right)$,
$P_{v}=$ volatile fraction of digester suspended solids (expressed as a decimal), and
$\theta_{c}=$ solids residence time (sludge age) (d).


VOLATILE SOLIDS REDUCTION IN AN AEROBIC DIGESTER AS A FUNCTION OF DIGESTER LIQUID TEMPERATURE AND DIGESTER SLUDGE AGE

## Anaerobic Digester

Design parameters for anaerobic digesters

| Parameter | Standard-rate | High-rate |
| :--- | :--- | :--- |
| Solids residence time, d | $30-90$ | $10-20$ |
| Volatile solids loading, $\mathrm{kg} / \mathrm{m}^{3} / \mathrm{d}$ | $0.5-1.6$ | $1.6-6.4$ |
| Digested solids concentration, \% | $4-6$ | $4-6$ |
| Volatile solids reduction, \% | $35-50$ | $45-55$ |
| Gas production $\left(\mathrm{m}^{3} / \mathrm{kg}\right.$ VSS added) | $0.5-0.55$ | $0.6-0.65$ |
| Methane content, $\%$ | 65 | 65 |
| Standard Rate |  |  |

$$
\text { Reactor Volume }=\frac{\mathrm{Vol}_{1}+\mathrm{Vol}_{2}}{2} \mathrm{t}_{\mathrm{r}}+\mathrm{Vol}_{2} \mathrm{t}_{\mathrm{s}}
$$

High Rate
First stage
Reactor Volume $=\mathrm{Vol}_{1} \mathrm{t}_{\mathrm{r}}$
Second Stage
Reactor Volume $=\frac{\mathrm{Vol}_{1}+\mathrm{Vol}_{2}}{2} \mathrm{t}_{\mathrm{t}}+\mathrm{Vol}_{2} \mathrm{t}_{\mathrm{s}}$, where
$\mathrm{Vol}_{1}=$ raw sludge input (volume/day),
$\mathrm{Vol}_{2}=$ digested sludge accumulation (volume/day),
$t_{r} \quad=$ time to react in a high-rate digester $=$ time to react
and thicken in a standard-rate digester,
$t_{t}=$ time to thicken in a high-rate digester, and
$t_{s}=$ storage time.

## Biotower

Fixed-Film Equation without Recycle

$$
\frac{S_{e}}{S_{o}}=e^{-k D / q^{n}}
$$

## Fixed-Film Equation with Recycle

$\frac{S_{e}}{S_{a}}=\frac{e^{-k D / q^{n}}}{(1+R)-R\left(e^{-k D / q^{n}}\right)}$
$S_{a}=\frac{S_{o}+R S_{e}}{1+R}$, where
$S_{e}=$ effluent $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{L})$,
$S_{o}=$ influent $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{L})$,
$D=$ depth of biotower media (m),
$q=$ hydraulic loading $\left(\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)$,
$=\left(Q_{o}+R Q_{o}\right) / \mathrm{A}_{\text {plan }}$ (with recycle) ,
$k=$ treatability constant; functions of wastewater and medium ( $\mathrm{min}^{-1}$ ); range $0.01-0.1$; for municipal wastewater and modular plastic media $0.06 \mathrm{~min}^{-1}$ (a) $20^{\circ} \mathrm{C}$,
$k_{T}=k_{2 o}(1.035)^{T-20}$,
$n=$ coefficient relating to media characteristics; modular plastic, $\mathrm{n}=0.5$,
$R=$ recycle ratio $=Q_{\mathrm{o}} / Q_{R}$, and
$Q_{R}=$ recycle flow rate.

[^10] Reuse, 3rd ed., McGraw-Hill, 1991.

## Facultative Pond

BOD Loading
Mass $(\mathrm{lb} /$ day $)=$ Flow $(\mathrm{MGD}) \times$ Concentration $(\mathrm{mg} / \mathrm{L})$ $\times 8.34(\mathrm{lb} / \mathrm{MGal}) /(\mathrm{mg} / \mathrm{L})$
Total System $\leq 35$ pounds $\mathrm{BOD}_{5}$ /acre-day
Minimum $=3$ ponds
Depth $=3-8 \mathrm{ft}$
Minimum $t=90-120$ days

## WATER TREATMENT TECHNOLOGIES

## Activated Carbon Adsorption

Freundlich Isotherm

$$
\frac{x}{m}=X=K C_{e}^{1 / n}, \text { where }
$$

$x=$ mass of solute adsorbed,
$m=$ mass of adsorbent,
$X=$ mass ratio of the solid phase-that is, the mass of adsorbed solute per mass of adsorbent,
$C_{e}=$ equilibrium concentration of solute, mass/volume, and
$K, n=$ experimental constants.
Linearized Form

$$
\ln \frac{x}{m}=1 / n \ln C_{e}+\ln K
$$

For linear isotherm, $n=1$
Langmuir Isotherm
$\frac{x}{m}=X=\frac{a K C_{e}}{1+K C_{e}}$, where
$a=$ mass of adsorbed solute required to saturate completely a unit mass of adsorbent, and
$K=$ experimental constant.
Linearized Form

$$
\frac{m}{x}=\frac{1}{a}+\frac{1}{a K} \frac{1}{C_{e}}
$$



Depth of Sorption Zone
$Z_{s}=Z\left[\frac{V_{Z}}{V_{T}-0.5 V_{Z}}\right]$, where

$C_{o}=$ concentration

## Air Stripping


where
$A_{\text {out }}=$ concentration in the effluent air,
$H=$ Henry's Law constant,
$H^{\prime}=H / R T=$ dimensionless Henry's Law constant,
$T=$ temperature in units consistent with R
$R=$ universal gas constant, $Q_{W} \quad=\quad$ water
flow rate ( $\mathrm{m}^{3} / \mathrm{s}$ ),
$Q_{A}=$ air flow rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$,
$A=$ concentration of contaminant in air $\left(\mathrm{kmol} / \mathrm{m}^{3}\right)$, and
$C=$ concentration of contaminants in water $\left(\mathrm{kmol} / \mathrm{m}^{3}\right)$.
$\underline{\text { Stripper Packing Height }=Z}$

$$
\begin{aligned}
& Z=\mathrm{HTU} \times \mathrm{NTU} \\
& \mathrm{NTU}=\left(\frac{R}{R-1}\right) \ln \left(\frac{\left(C_{\mathrm{in}} / C_{\mathrm{out}}\right)(R-1)+1}{R}\right)
\end{aligned}
$$

NTU = number of transfer units
where
$R \quad=$ stripping factor $H^{\prime}\left(Q_{A} / Q_{W}\right)$,
$C_{\text {in }} \quad=$ concentration in the influent water $\left(\mathrm{kmol} / \mathrm{m}^{3}\right)$, and
$C_{\text {out }} \quad=$ concentration in the effluent water $\left(\mathrm{kmol} / \mathrm{m}^{3}\right)$.

$$
\mathrm{HTU}=\text { Height of Transfer Units }=\frac{L}{M_{W} K_{L} a},
$$

where
$L \quad=$ liquid molar loading rate $\left[\mathrm{kmol} /\left(\mathrm{s}^{\bullet} \mathrm{m}^{2}\right)\right]$,
$M_{W} \quad=$ molar density of water $\left(55.6 \mathrm{kmol} / \mathrm{m}^{3}\right)=3.47$ $\mathrm{lbmol} / \mathrm{ft}^{3}$, and
$K_{L} a \quad=$ overall transfer rate constant $\left(\mathrm{s}^{-1}\right)$.

## Clarifier

Overflow rate $=$ Hydraulic loading rate $=V_{o}=Q / A_{\text {surface }}$
Weir overflow rate $=\mathrm{WOR}=Q /$ Weir Length
Horizontal velocity $=$ Approach velocity $=V_{h}$

$$
=Q / A_{\text {cross-section }}=\mathrm{Q} / \mathrm{A}_{\mathrm{x}}
$$

Hydraulic residence time $=\mathrm{Vol} / \mathrm{Q}=\theta$
where
$\mathrm{Q}=$ flow rate,
$\mathrm{A}_{\mathrm{x}}=$ cross-sectional area,
$\mathrm{A}=$ surface area, plan view, and
$\mathrm{Vol}=\operatorname{tank}$ volume.

Typical Primary Clarifier Efficiency Percent Removal

| Suspended Solids | Overflow rates |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1,200 \\ \left(\mathrm{gpd} / \mathrm{ft}^{2}\right) \\ 48.9 \\ (\mathrm{~m} / \mathrm{d}) \end{gathered}$ | $\begin{gathered} 1,000 \\ \left(\mathrm{gpd} / \mathrm{ft}^{2}\right) \\ 40.7 \\ (\mathrm{~m} / \mathrm{d}) \end{gathered}$ | $\begin{gathered} 800 \\ \left(\mathrm{gpd} / \mathrm{ft}^{2}\right) \\ 32.6 \\ (\mathrm{~m} / \mathrm{d}) \end{gathered}$ | $\begin{gathered} 600 \\ \left(\mathrm{gpd} / \mathrm{ft}^{2}\right) \\ 24.4 \\ (\mathrm{~m} / \mathrm{d}) \end{gathered}$ |
|  | 54\% | 58\% | 64\% | 68\% |
| $\mathrm{BOD}_{5}$ | 30\% | 32\% | 34\% | 36\% |

Design Data for Clarifiers for Activated-Sludge Systems

|  | Overflow rate, <br> $\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$ |  | Loading <br> $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$ |  | Depth <br> $(\mathrm{m})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type of Treatment | Average | Peak | Average | Peak |  |
| Settling following <br> air-activated sludge <br> (excluding extended <br> aeration) | $16-32$ | $40-48$ | $3.0-6.0$ | 9.0 | $3.5-5$ |
| Settling following <br> extended aeration | $8-16$ | $24-32$ | $1.0-5.0$ | 7.0 | $3.5-5$ |

Adapted from Metcalf \& Eddy, Inc. [5-36]

## Design Criteria for Sedimentation Basins

| Type of Basin | Overflow Rate (gpd/ft ${ }^{2}$ ) | Hydraulic Residence Time (hr) |
| :---: | :---: | :---: |
| Water Treatment |  |  |
| Presedimentation | 300-500 | 3-4 |
| Clarification following coagulation and flocculation |  |  |
| 1. Alum coagulation | 350-550 | 4-8 |
| 2. Ferric coagulation | 550-700 | 4-8 |
| 3. Upflow clarifiers |  |  |
| a. Ground water | 1,500-2,200 | 1 |
| b. Surface water | 1,000-1,500 | 4 |
| Clarification following lime-soda softening |  |  |
| 1. Conventional | 550-1,000 | 2-4 |
| 2. Upflow clarifiers |  |  |
| a. Ground water | 1,000-2,500 | 1 |
| b. Surface water | 1,000-1,800 | 4 |
| Wastewater Treatment |  |  |
| Primary clarifiers | 600-1,200 | 2 |
| Fixed film reactors |  |  |
| 1. Intermediate and final clarifiers | 400-800 | 2 |
| Activated sludge | 800-1,200 | 2 |
| Chemical precipitation | 800-1,200 | 2 |

## Weir Loadings

1. Water Treatment-weir overflow rates should not exceed $20,000 \mathrm{gpd} / \mathrm{ft}$
2. Wastewater Treatment
a. Flow $\leq 1$ MGD: weir overflow rates should not exceed $10,000 \mathrm{gpd} / \mathrm{ft}$
b. Flow > 1 MGD: weir overflow rates should not exceed $15,000 \mathrm{gpd} / \mathrm{ft}$

## Horizontal Velocities

1. Water Treatment-horizontal velocities should not exceed 0.5 fpm
2. Wastewater Treatment-no specific requirements (use the same criteria as for water)

## Dimensions

1. Rectangular tanks
a. Length:Width ratio $=3: 1$ to $5: 1$
b. Basin width is determined by the scraper width (or multiples of the scraper width)
c. Bottom slope is set at $1 \%$
d. Minimum depth is 10 ft
2. Circular Tanks
a. Diameters up to 200 ft
b. Diameters must match the dimensions of the sludge scraping mechanism
c. Bottom slope is less than $8 \%$
d. Minimum depth is 10 ft

Length:Width Ratio
Clarifier
3:1 to 5:1
Filter bay
1.2:1 to $1.5: 1$

Chlorine contact chamber 20:1 to 50:1

## Electrodialysis

In $n$ Cells, the Required Current Is:

$$
I=(F Q N / n) \times\left(E_{1} / E_{2}\right) \text {, where }
$$

$I=$ current (amperes),
$F=$ Faraday's constant $=96,487 \mathrm{C} / \mathrm{g}$-equivalent,
$Q=$ flow rate (L/s),
$N=$ normality of solution (g-equivalent/L),
$n=$ number of cells between electrodes,
$E_{1}=$ removal efficiency (fraction), and
$E_{2}=$ current efficiency (fraction).

Voltage
$E=I R$, where
$E=$ voltage requirement (volts), and
$R=$ resistance through the unit (ohms).

## Required Power

$$
P=I^{2} R \text { (watts) }
$$

## Filtration Equations

Effective size $=d_{10}$
Uniformity coefficient $=d_{60} / d_{10}$
$d_{x}=$ diameter of particle class for which $x \%$ of sample is less than (units meters or feet).

## Head Loss Through Clean Bed

## Rose Equation

Monosized Media Multisized Media
$h_{f}=\frac{1.067\left(V_{s}\right)^{2} L C_{D}}{g \eta^{4} d} \quad h_{f}=\frac{1.067\left(V_{s}\right)^{2} L}{g \eta^{4}} \sum \frac{C_{D_{i j}} x_{i j}}{d_{i j}}$

## Carmen-Kozeny Equation

Monosized Media Multisized Media
$h_{f}=\frac{f^{\prime} L(1-\eta) V_{s}^{2}}{\eta^{3} g d_{p}} \quad h_{f}=\frac{L(1-\eta) V_{s}^{2}}{\eta^{3} g} \sum \frac{f_{i j}^{\prime} x_{i j}}{d_{i j}}$
$f^{\prime}=$ friction factor $=150\left(\frac{1-\eta}{R e}\right)+1.75$, where
$h_{f}=$ head loss through the cleaner bed $\left(\mathrm{m}\right.$ of $\left.\mathrm{H}_{2} \mathrm{O}\right)$,
$L=$ depth of filter media ( m ),
$\eta=$ porosity of bed $=$ void volume/total volume,
$V_{s}=$ filtration rate $=$ empty bed approach velocity $=$ $Q / A_{\text {plan }}(\mathrm{m} / \mathrm{s})$, and
$g=$ gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$.
$R e=$ Reynolds number $=\frac{V_{s} \rho d}{\mu}$
$d_{i j}, d_{p}, d=$ diameter of filter media particles; arithmetic average of adjacent screen openings (m); $i=$ filter media (sand, anthracite, garnet); $j=$ filter media particle size,
$x_{i j} \quad=$ mass fraction of media retained between adjacent sieves,
$f_{i j}^{\prime} \quad=$ friction factors for each media fraction, and
$C_{D} \quad=$ drag coefficient as defined in settling velocity equations.

Bed Expansion
Monosized Multisized
$L_{f b}=\frac{L_{o}\left(1-\eta_{o}\right)}{1-\left(\frac{V_{B}}{V_{t}}\right)^{0.22}} \quad L_{f b}=L_{o}\left(1-\eta_{o}\right) \sum \frac{x_{i j}}{1-\left(\frac{V_{B}}{V_{t, i, j}}\right)^{0.22}}$
$\eta_{f b}=\left(\frac{V_{B}}{V_{t}}\right)^{0.22}$, where
$L_{f b}=$ depth of fluidized filter media (m),
$V_{B}=$ backwash velocity (m/s), $Q / A_{\text {plan }}$,
$V_{t}=$ terminal setting velocity, and
$\eta_{f b}=$ porosity of fluidized bed.
$L_{o}=$ initial bed depth
$\eta_{o}=$ initial bed porosity

## Lime-Soda Softening Equations

$50 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}$ equivalent $=1 \mathrm{meq} / \mathrm{L}$

1. Carbon dioxide removal

$$
\mathrm{CO}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

2. Calcium carbonate hardness removal

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}
$$

3. Calcium non-carbonate hardness removal

$$
\mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{-2}
$$

4. Magnesium carbonate hardness removal

$$
\begin{gathered}
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s})+ \\
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

5. Magnesium non-carbonate hardness removal

$$
\begin{aligned}
\mathrm{MgSO}_{4}+ & \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+ \\
& \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}
\end{aligned}
$$

6. Destruction of excess alkalinity

$$
2 \mathrm{HCO}_{3}^{-}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

7. Recarbonation

$$
\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

| Molecular <br> Formulas | Molecular Weight | $n$ | EquivalentWeight |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { \# Equiv per } \\ \text { mole } \end{gathered}$ |  |
| $\mathrm{CO}_{3}{ }^{2-}$ | 60.0 | 2 | 30.0 |
| $\mathrm{CO}_{2}$ | 44.0 | 2 | 22.0 |
| $\mathrm{Ca}(\mathrm{OH})_{2}$ | 74.1 | 2 | 37.1 |
| $\mathrm{CaCO}_{3}$ | 100.1 | 2 | 50.0 |
| $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ | 162.1 | 2 | 81.1 |
| $\mathrm{CaSO}_{4}$ | 136.1 | 2 | 68.1 |
| $\mathrm{Ca}^{2+}$ | 40.1 | 2 | 20.0 |
| $\mathrm{H}^{+}$ | 1.0 | 1 | 1.0 |
| $\mathrm{HCO}_{3}^{-}$ | 61.0 | 1 | 61.0 |
| $\mathbf{M g}\left(\mathrm{HCO}_{3}\right)_{2}$ | 146.3 | 2 | 73.2 |
| $\mathrm{Mg}(\mathrm{OH})_{2}$ | 58.3 | 2 | 29.2 |
| $\mathrm{MgSO}_{4}$ | 120.4 | 2 | 60.2 |
| $\mathrm{Mg}^{2+}$ | 24.3 | 2 | 12.2 |
| $\mathrm{Na}^{+}$ | 23.0 | 1 | 23.0 |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | 106.0 | 2 | 53.0 |
| $\mathrm{OH}^{-}$ | 17.0 | 1 | 17.0 |
| $\mathrm{SO}_{4}{ }^{2-}$ | 96.1 | 2 | 48.0 |

## Rapid Mix and Flocculator Design

$$
G=\sqrt{\frac{P}{\mu V o l}}=\sqrt{\frac{\gamma H_{L}}{t \mu}}
$$

$G t=10^{4}-10^{5}$
where
$G=$ mixing intensity $=$ root mean square velocity gradient,
$P=$ power,
Vol $=$ volume,
$\mu=$ bulk viscosity,
$\gamma=$ specific weight of water,
$H_{L}=$ head loss in mixing zone, and
$t=$ time in mixing zone.

## Reel and Paddle

$P=\frac{C_{D} A_{P} \rho_{f} V_{p}^{3}}{2}$, where
$C_{D}=$ drag coefficient $=1.8$ for flat blade with a L: W > 20:1,
$A_{p}=$ area of blade $\left(\mathrm{m}^{2}\right)$ perpendicular to the direction of travel through the water,
$\rho_{f}=$ density of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$,
$V_{p}=$ relative velocity of paddle $(\mathrm{m} / \mathrm{sec})$, and
$V_{\text {mix }}=V_{p} \cdot$ slip coefficient.
slip coefficient $=0.5-0.75$.

## Turbulent Flow Impeller Mixer

|  | $P=K_{T}(n)^{3}\left(D_{i}\right)^{5} \rho_{\text {f }}$, where |  |
| :--- | :--- | :--- |
| $K_{T}=$ | impeller constant (see table), |  |
| $n=$ | rotational speed (rev/sec), and |  |
| $D_{i}=$ | impeller diameter (m). |  |
| Values of the Impeller Constant $K_{T}$ |  |  |
| (Assume Turbulent Flow) |  |  |$]$

## Reverse Osmosis

Osmotic Pressure of Solutions of Electrolytes

$$
\pi=\phi v \frac{n}{V o l} R T \text {, where }
$$

$\pi=$ osmotic pressure,
$\phi=$ osmotic coefficient,
$v=$ number of ions formed from one molecule of electrolyte,
$n=$ number of moles of electrolyte,
Vol $=$ volume of solvent,
$R=$ universal gas constant, and
$T=$ absolute pressure.


A CONTINUOUS-FLOW
REVERSE OSMOSIS UNIT

Salt Flux through the Membrane
$J_{s}=\left(D_{s} K_{s} / \Delta Z\right)\left(C_{\text {in }}-C_{\text {out }}\right)$, where
$J_{s}=$ salt flux through the membrane $\left[\mathrm{gmol} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\right]$,
$D_{s}=$ diffusivity of the solute in the membrane $\left(\mathrm{cm}^{2} / \mathrm{s}\right)$,
$K_{s}=$ solute distribution coefficient (dimensionless),
$C=$ concentration ( $\mathrm{gmol} / \mathrm{cm}^{3}$ ),
$\Delta Z=$ membrane thickness (cm), and
$J_{s}=K_{p} \times\left(C_{\text {in }}-C_{\text {out }}\right)$
$K_{p}=$ membrane solute mass transfer coefficient $=$ $D_{s} K_{s} / \Delta Z(\mathrm{~L} / \mathrm{t}, \mathrm{cm} / \mathrm{s})$.

## Water Flux

$J_{w}=W_{p} \times(\Delta P-\Delta \pi)$, where
$J_{w}=$ water flux through the membrane $\left[\mathrm{gmol} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\right]$,
$W_{p}=$ coefficient of water permeation, a characteristic of the particular membrane $\left[\mathrm{gmol} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{~atm}\right)\right]$,
$\Delta P=$ pressure differential across membrane $=P_{\text {in }}-P_{\text {out }}$ (atm), and
$\Delta \pi=$ osmotic pressure differential across membrane $\pi_{\text {in }}-\pi_{\text {out }}(\mathrm{atm})$.

## Settling Equations

General Spherical

|  | $V_{t}=\sqrt{\frac{4 / 3 g\left(\rho_{p}-\rho_{f}\right) d}{C_{D} \rho_{f}}}$ |
| :---: | :---: |
|  | $C_{D}=24 / \operatorname{Re} \quad($ Laminar; $\operatorname{Re} \leq 1.0)$ |
|  | $\left.=24 / R e^{+} 3 /(R e)^{1 / 2}+0.34 \quad \text { (Transitional }\right)$ |
|  | $=0.4\left(\right.$ Turbulent $\left.\mathrm{Re} \geq 10^{4}\right)$ |
|  | $R e=\text { Reynolds number }=\frac{V_{t} \rho d}{\mu}, \text { where }$ |
| $g$ | = gravitational constant, |
| $\rho_{p}$ | = density of particle and fluid respectively, |
| $d$ | $=$ diameter of sphere, |
| $C_{D}$ | $=$ spherical drag coefficient, |
| $\mu$ | $\begin{aligned} & =\text { bulk viscosity of liquid }=\text { absolute viscosity, } \\ & \text { and } \end{aligned}$ |
| $V_{t}$ | $=$ terminal settling velocity . |

$C_{D}=24 / \operatorname{Re} \quad($ Laminar; $\operatorname{Re} \leq 1.0)$
$=24 / R e^{+} /(R e)^{1 / 2}+0.34 \quad$ (Transitional)
$=0.4\left(\right.$ Turbulent $\left.; R e \geq 10^{4}\right)$
$R e=$ Reynolds number $=\frac{V_{t} \rho d}{\mu}$, where
$g \quad=$ gravitational constant,
$\rho_{p}$ and $\rho_{f}=$ density of particle and fluid respectively,
$d \quad=$ diameter of sphere,
$C_{D} \quad=$ spherical drag coefficient,
$\mu \quad=$ bulk viscosity of liquid $=$ absolute viscosity,
$V_{t} \quad=$ terminal settling velocity.

Stokes' Law

$$
\mathrm{V}_{t}=\frac{g\left(\rho_{p}-\rho_{f}\right) d^{2}}{18 \mu}
$$

Approach velocity $=$ horizontal velocity $=Q / A_{x}$, Hydraulic loading rate $=Q / A$, and
Hydraulic residence time $=V o l / Q=\theta$. where
$Q=$ flow rate,
$A_{x}=$ cross-sectional area,
$A=$ surface area, plan view, and Vol $=$ tank volume.

## Ultrafiltration

$J_{w}=\frac{\varepsilon r^{2} \int \Delta P}{8 \mu \delta}$, where
$\varepsilon=$ membrane porosity,
$r=$ membrane pore size,
$\Delta P=$ net transmembrane pressure,
$\mu=$ viscosity,
$\delta=$ membrane thickness, and
$J_{w}=$ volumetric flux ( $\mathrm{m} / \mathrm{s}$ ).

## ELECTRICAL AND COMPUTER ENGINEERING

## UNITS

The basic electrical units are coulombs for charge, volts for voltage, amperes for current, and ohms for resistance and impedance.

## ELECTROSTATICS

$$
\mathbf{F}_{2}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon r^{2}} \mathbf{a}_{r 12}, \text { where }
$$

$\mathbf{F}_{2}=$ the force on charge 2 due to charge 1,
$Q_{i}=$ the $i$ th point charge,
$r=$ the distance between charges 1 and 2,
$\mathbf{a}_{\mathrm{r} 12}=\mathrm{a}$ unit vector directed from 1 to 2 , and
$\varepsilon=$ the permittivity of the medium.
For free space or air:

$$
\varepsilon=\varepsilon_{0}=8.85 \times 10^{-12} \text { farads } / \text { meter }
$$

## Electrostatic Fields

Electric field intensity $\mathbf{E}$ (volts/meter) at point 2 due to a point charge $Q_{1}$ at point 1 is

$$
\mathbf{E}=\frac{Q_{1}}{4 \pi \varepsilon r^{2}} \mathbf{a}_{r 12}
$$

For a line charge of density $\rho_{L}$ coulomb/meter on the $z$-axis, the radial electric field is

$$
\mathbf{E}_{L}=\frac{\rho_{L}}{2 \pi \varepsilon r} \mathbf{a}_{r}
$$

For a sheet charge of density $\rho_{s}$ coulomb/meter ${ }^{2}$ in the $x-y$ plane:

$$
\mathbf{E}_{s}=\frac{\rho_{s}}{2 \varepsilon} \mathbf{a}_{z}, z>0
$$

Gauss' law states that the integral of the electric flux density $\mathbf{D}=\varepsilon \mathbf{E}$ over a closed surface is equal to the charge enclosed or

$$
Q_{e n c l}=\oiint_{s} \varepsilon \mathbf{E} \cdot d \mathbf{S}
$$

The force on a point charge $Q$ in an electric field with intensity $\mathbf{E}$ is $\mathbf{F}=\mathbf{Q E}$.
The work done by an external agent in moving a charge $Q$ in an electric field from point $p_{1}$ to point $p_{2}$ is

$$
W=-Q \int_{p_{1}}^{p_{2}} \mathbf{E} \cdot d \mathbf{l}
$$

The energy stored $W_{E}$ in an electric field $\mathbf{E}$ is

$$
W_{E}=(1 / 2) \iiint_{V} \varepsilon|\mathbf{E}|^{2} d V
$$

## Voltage

The potential difference $V$ between two points is the work per unit charge required to move the charge between the points.
For two parallel plates with potential difference $V$, separated by distance $d$, the strength of the $E$ field between the plates is

$$
E=\frac{V}{d}
$$

directed from the + plate to the - plate.

## Current

Electric current $i(t)$ through a surface is defined as the rate of charge transport through that surface or

$$
i(t)=d q(t) / d t \text {, which is a function of time } t
$$

since $q(t)$ denotes instantaneous charge.
A constant current $i(t)$ is written as $I$, and the vector current density in amperes $/ \mathrm{m}^{2}$ is defined as $\mathbf{J}$.

## Magnetic Fields

For a current carrying wire on the $z$-axis

$$
\mathbf{H}=\frac{\mathbf{B}}{\mu}=\frac{I \mathbf{a}_{\phi}}{2 \pi r}, \text { where }
$$

$\mathbf{H}=$ the magnetic field strength (amperes/meter),
$\mathbf{B}=$ the magnetic flux density (tesla),
$\mathbf{a}_{\phi}=$ the unit vector in positive $\phi$ direction in cylindrical coordinates,
$I=$ the current, and
$\mu=$ the permeability of the medium.
For air: $\mu=\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Force on a current carrying conductor in a uniform magnetic field is

$$
\mathbf{F}=\Omega \mathbf{L} \times \mathbf{B}, \text { where }
$$

$\mathbf{L}=$ the length vector of a conductor.
The energy stored $W_{H}$ in a magnetic field $\mathbf{H}$ is

$$
W_{H}=(1 / 2) \iiint_{V} \mu|\mathbf{H}|^{2} d v
$$

## Induced Voltage

Faraday's Law states for a coil of $N$ turns enclosing flux $\phi$ :

$$
v=-N d \phi / d t, \text { where }
$$

$v=$ the induced voltage, and
$\phi=$ the flux (webers) enclosed by the $N$ conductor turns, and
$\phi=\int_{S} \mathbf{B} \cdot d \mathbf{S}$

## Resistivity

For a conductor of length $L$, electrical resistivity $\rho$, and cross-sectional area $A$, the resistance is

$$
R=\frac{\rho L}{A}
$$

For metallic conductors, the resistivity and resistance vary linearly with changes in temperature according to the following relationships:

$$
\begin{aligned}
& \rho=\rho_{\mathrm{o}}\left[1+\alpha\left(T-T_{\mathrm{o}}\right)\right], \text { and } \\
& R=R_{\mathrm{o}}\left[1+\alpha\left(T-T_{\mathrm{o}}\right)\right], \text { where }
\end{aligned}
$$

$\rho_{\mathrm{o}}$ is resistivity at $T_{\mathrm{o}}, R_{\mathrm{o}}$ is the resistance at $T_{\mathrm{o}}$, and $\alpha$ is the temperature coefficient.
Ohm's Law: $\quad V=I R ; v(t)=i(t) R$

## Resistors in Series and Parallel

For series connections, the current in all resistors is the same and the equivalent resistance for $n$ resistors in series is

$$
R_{S}=R_{1}+R_{2}+\ldots+R_{n}
$$

For parallel connections of resistors, the voltage drop across each resistor is the same and the equivalent resistance for $n$ resistors in parallel is

$$
R_{P}=1 /\left(1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}\right)
$$

For two resistors $R_{1}$ and $R_{2}$ in parallel

$$
R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

## Power Absorbed by a Resistive Element

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

## Kirchhoff's Laws

Kirchhoff's voltage law for a closed path is expressed by

$$
\Sigma V_{\text {rises }}=\Sigma V_{\text {drops }}
$$

Kirchhoff's current law for a closed surface is

$$
\Sigma I_{\text {in }}=\Sigma I_{\text {out }}
$$

## SOURCE EQUIVALENTS

For an arbitrary circuit


The Thévenin equivalent is


The open circuit voltage $V_{o c}$ is $V_{a}-V_{b}$, and the short circuit current is $i_{\text {sc }}$ from $a$ to $b$.
The Norton equivalent circuit is

where $i_{\mathrm{sc}}$ and $R_{\text {eq }}$ are defined above.
A load resistor $R_{L}$ connected across terminals $a$ and $b$ will draw maximum power when $R_{L}=R_{\text {eq }}$.

## CAPACITORS AND INDUCTORS



The charge $q_{C}(t)$ and voltage $v_{C}(t)$ relationship for a capacitor $C$ in farads is

$$
C=q_{C}(t) / v_{C}(t) \quad \text { or } \quad q_{C}(t)=C v_{C}(t)
$$

A parallel plate capacitor of area $A$ with plates separated a distance $d$ by an insulator with a permittivity $\varepsilon$ has a capacitance

$$
C=\frac{\varepsilon A}{d}
$$

The current-voltage relationships for a capacitor are

$$
\begin{aligned}
v_{C}(t) & =v_{C}(0)+\frac{1}{C} \int_{0}^{t} i_{C}(\tau) d \tau \\
\text { and } \quad i_{C}(t) & =C\left(d v_{C} / d t\right)
\end{aligned}
$$

The energy stored in a capacitor is expressed in joules and given by

$$
\text { Energy }=C v_{C}{ }^{2} / 2=q_{C}{ }^{2} / 2 C=q_{C} v_{C} / 2
$$

The inductance $L$ of a coil with N turns is

$$
L=N \phi / i_{L}
$$

and using Faraday's law, the voltage-current relations for an inductor are

$$
\begin{aligned}
& v_{L}(t)=L\left(d i_{L} / d t\right) \\
& i_{L}(t)=i_{L}(0)+\frac{1}{L} \int_{0}^{t} v_{L}(\tau) d \tau, \text { where }
\end{aligned}
$$

$v_{L}=$ inductor voltage,
$L=$ inductance (henrys), and
$i=$ inductor current (amperes).
The energy stored in an inductor is expressed in joules and given by

$$
\text { Energy }=L i_{L}^{2} / 2
$$

## Capacitors and Inductors in Parallel and Series

Capacitors in Parallel

$$
C_{P}=C_{1}+C_{2}+\ldots+C_{n}
$$

Capacitors in Series

$$
C_{S}=\frac{1}{1 / C_{1}+1 / C_{2}+\ldots+1 / C_{n}}
$$

Inductors in Parallel

$$
L_{P}=\frac{1}{1 / L_{1}+1 / L_{2}+\ldots+1 / L_{n}}
$$

Inductors in Series

$$
L_{S}=L_{1}+L_{2}+\ldots+L_{n}
$$

## AC CIRCUITS

For a sinusoidal voltage or current of frequency $f(\mathrm{~Hz})$ and period $T$ (seconds),

$$
f=1 / T=\omega /(2 \pi) \text {, where }
$$

$\omega=$ the angular frequency in radians/s.

## Average Value

For a periodic waveform (either voltage or current) with period $T$,

$$
X_{\mathrm{ave}}=(1 / T) \int_{0}^{T} x(t) d t
$$

The average value of a full-wave rectified sinusoid is

$$
X_{\text {ave }}=\left(2 X_{\max }\right) / \pi
$$

and half this for half-wave rectification, where
$X_{\text {max }}=$ the peak amplitude of the waveform.

## Effective or RMS Values

For a periodic waveform with period $T$, the rms or effective value is

$$
X_{\mathrm{eff}}=X_{\mathrm{rms}}=\left[(1 / T) \int_{0}^{T} x^{2}(t) d t\right]^{1 / 2}
$$

For a sinusoidal waveform and full-wave rectified sine wave,

$$
X_{\text {eff }}=X_{\text {rms }}=X_{\max } / \sqrt{2}
$$

For a half-wave rectified sine wave,

$$
X_{\mathrm{eff}}=X_{\mathrm{rms}}=X_{\max } / 2
$$

For a periodic signal,
$X_{\mathrm{rms}}=\sqrt{X_{\mathrm{dc}}^{2}+\sum_{\mathrm{n}=1}^{\infty} X_{\mathrm{n}}{ }^{2}}$ where
$X_{\mathrm{dc}}$ is the dc component of $x(t)$
$X_{\mathrm{n}}$ is the rms value of the $\mathrm{n}^{\text {th }}$ harmonic

## Sine-Cosine Relations

$\cos (\omega t)=\sin (\omega t+\pi / 2)=-\sin (\omega t-\pi / 2)$
$\sin (\omega t)=\cos (\omega t-\pi / 2)=-\cos (\omega t+\pi / 2)$

## Phasor Transforms of Sinusoids

$P\left[V_{\text {max }} \cos (\omega t+\phi)\right]=V_{\text {rms }} \angle \phi=\boldsymbol{V}$
$P\left[I_{\max } \cos (\omega t+\theta)\right]=I_{\mathrm{rms}} \angle \theta=\boldsymbol{I}$
For a circuit element, the impedance is defined as the ratio of phasor voltage to phasor current.

$$
\mathbf{Z}=\boldsymbol{V} / \boldsymbol{I}
$$

For a Resistor, $\quad \mathbf{Z}_{\mathrm{R}}=R$
For a Capacitor, $\mathbf{Z}_{\mathrm{C}}=\frac{1}{j \omega C}=j X_{\mathrm{C}}$

For an Inductor,

$$
\boldsymbol{Z}_{\mathrm{L}}=j \omega L=j X_{\mathrm{L}} \text {, where }
$$

$X_{\mathrm{C}}$ and $X_{\mathrm{L}}$ are the capacitive and inductive reactances respectively defined as

$$
X_{C}=-\frac{1}{\omega C} \quad \text { and } \quad X_{L}=\omega L
$$

Impedances in series combine additively while those in parallel combine according to the reciprocal rule just as in the case of resistors.

## ALGEBRA OF COMPLEX NUMBERS

Complex numbers may be designated in rectangular form or polar form. In rectangular form, a complex number is written in terms of its real and imaginary components.

$$
z=a+j b, \text { where }
$$

$a=$ the real component,
$b=$ the imaginary component, and
$j=\sqrt{-1}$
In polar form

$$
\begin{aligned}
& z=c \angle \theta, \text { where } \\
& c= \sqrt{a^{2}+b^{2}}, \\
& \theta= \tan ^{-1}(b / a), \\
& a= c \cos \theta, \text { and } \\
& b=c \sin \theta .
\end{aligned}
$$

Complex numbers are added and subtracted in rectangular form. If

$$
\begin{aligned}
& z_{1}=a_{1}+j b_{1}=c_{1}\left(\cos \theta_{1}+j \sin \theta_{1}\right) \\
&=c_{1} \angle \theta_{1} \text { and } \\
& z_{2}=a_{2}+j b_{2}=c_{2}\left(\cos \theta_{2}+j \sin \theta_{2}\right) \\
&=c_{2} \angle \theta_{2} \text {, then } \\
& z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right) \text { and } \\
& z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+j\left(b_{1}-b_{2}\right)
\end{aligned}
$$

While complex numbers can be multiplied or divided in rectangular form, it is more convenient to perform these operations in polar form.

$$
\begin{aligned}
& z_{1} \times z_{2}=\left(c_{1} \times c_{2}\right) \angle \theta_{1}+\theta_{2} \\
& z_{1} / z_{2}=\left(c_{1} / c_{2}\right) \angle \theta_{1}-\theta_{2}
\end{aligned}
$$

The complex conjugate of a complex number $z_{1}=\left(a_{1}+\mathrm{j} b_{1}\right)$ is defined as $z_{1}{ }^{*}=\left(a_{1}-\mathrm{j} b_{1}\right)$. The product of a complex number and its complex conjugate is $z_{1} z_{1}{ }^{*}=a_{1}{ }^{2}+b_{1}{ }^{2}$.

## RC AND RL TRANSIENTS


$t \geq 0 ; v_{\mathrm{C}}(t)=v_{\mathrm{C}}(0) e^{-t / R C}+V\left(1-e^{-t / R C}\right)$
$i(t)=\left\{\left[V-v_{C}(0)\right] / R\right\} e^{-t / R C}$
$v_{R}(t)=i(t) R=\left[V-v_{C}(0)\right] e^{-t / R C}$

$t \geq 0 ; i(t)=i(0) e^{-R t / L}+\frac{V}{R}\left(1-e^{-R t / L}\right)$

$$
\begin{aligned}
& v_{R}(t)=i(t) R=i(0) R e^{-R t L}+V\left(1-e^{-R t L L}\right) \\
& v_{L}(t)=L(d i / d t)=-i(0) R e^{-R t / L}+V e^{-R t L}
\end{aligned}
$$

where $v(0)$ and $i(0)$ denote the initial conditions and the parameters $R C$ and $L / R$ are termed the respective circuit time constants.

## RESONANCE

The radian resonant frequency for both parallel and series resonance situations is

$$
\omega_{o}=\frac{1}{\sqrt{L C}}=2 \pi f_{o}(\mathrm{rad} / \mathrm{s})
$$

## Series Resonance

$$
\begin{aligned}
& \omega_{o} L=\frac{1}{\omega_{o} C} \\
& Z=R \text { at resonance. } \\
& Q=\frac{\omega_{o} L}{R}=\frac{1}{\omega_{o} C R} \\
& B W=\omega_{0} / Q(\mathrm{rad} / \mathrm{s})
\end{aligned}
$$

## Parallel Resonance

$\omega_{o} L=\frac{1}{\omega_{o} C} \quad$ and
$Z=R$ at resonance.
$Q=\omega_{o} R C=\frac{R}{\omega_{o} L}$
$B W=\omega_{o} / Q(\mathrm{rad} / \mathrm{s})$

## TWO-PORT PARAMETERS

A two-port network consists of two input and two output terminals as shown below.


A two-port network may be represented by an equivalent circuit using a set of two-port parameters. Three commonly used sets of parameters are impedance, admittance, and hybrid parameters. The following table describes the equations used for each of these sets of parameters.

| Parameter Type | Equations | Definitions |
| :---: | :---: | :---: |
| Impedance (z) | $\begin{aligned} & V_{1}=z_{11} I_{1}+z_{12} I_{2} \\ & V_{2}=z_{21} I_{1}+z_{22} I_{2} \end{aligned}$ | $z_{11}=\frac{V_{1}}{I_{1}} I_{2}=0 \quad z_{12}=\left.\frac{V_{1}}{I_{2}}\right\|_{I_{1}=0} \quad z_{21}=\left.\frac{V_{2}}{I_{1}}\right\|_{I_{2}=0} \quad z_{22}=\left.\frac{V_{2}}{I_{2}}\right\|_{I_{1}=0}$ |
| Admittance (y) | $\begin{aligned} & I_{1}=y_{11} V_{1}+y_{12} V_{2} \\ & I_{2}=y_{21} V_{1}+y_{22} V_{2} \end{aligned}$ | $y_{11}=\left.\frac{I_{1}}{V_{1}}\right\|_{2}=0 \quad y_{12}=\left.\frac{I_{1}}{V_{2}}\right\|_{V_{1}=0} \quad y_{21}=\left.\frac{I_{2}}{V_{1}}\right\|_{V_{2}=0} \quad y_{22}=\left.\frac{I_{2}}{V_{2}}\right\|_{V_{1}=0}$ |
| Hybrid (h) | $\begin{aligned} & V_{1}=h_{11} I_{1}+h_{12} V_{2} \\ & I_{2}=h_{21} I_{1}+h_{22} V_{2} \end{aligned}$ | $h_{11}=\left.\frac{I_{1}}{V_{1}}\right\|_{V_{2}=0} \quad h_{12}=\left.\frac{V_{1}}{V_{2}}\right\|_{I_{1}=0} \quad h_{21}=\left.\frac{I_{2}}{I_{1}}\right\|_{V_{2}=0} \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right\|_{I_{1}=0}$ |

## AC POWER

## Complex Power

Real power $P$ (watts) is defined by

$$
\begin{aligned}
P & =(1 / 2) V_{\max } I_{\max } \cos \theta \\
& =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \theta
\end{aligned}
$$

where $\theta$ is the angle measured from $\boldsymbol{V}$ to $\boldsymbol{I}$. If $\boldsymbol{I}$ leads (lags) $\boldsymbol{V}$, then the power factor ( $p . f$. ),

$$
p . f .=\cos \theta
$$

is said to be a leading (lagging) $p . f$.
Reactive power $Q$ (vars) is defined by

$$
\begin{aligned}
Q & =(1 / 2) V_{\max } I_{\max } \sin \theta \\
& =V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \theta
\end{aligned}
$$

Complex power $\boldsymbol{S}$ (volt-amperes) is defined by

$$
\boldsymbol{S}=\boldsymbol{V} \boldsymbol{I}^{*}=P+j Q
$$

where $I^{*}$ is the complex conjugate of the phasor current.


Complex Power Triangle (Inductive Load)
For resistors, $\theta=0$, so the real power is

$$
P=V_{\mathrm{rms}} I_{\mathrm{rms}}=V_{\mathrm{rms}}^{2} / R=I_{\mathrm{rms}}^{2} R
$$

## Balanced Three-Phase (3- $\phi$ ) Systems

The 3- $\phi$ line-phase relations are
for a delta
for a wye

$$
\begin{array}{ll}
V_{L}=V_{p} & V_{L}=\sqrt{3} V_{p}=\sqrt{3} V_{L N} \\
I_{L}=\sqrt{3} I_{p} & I_{L}=I_{p}
\end{array}
$$

where subscripts $L / P$ denote line/phase respectively.
A balanced 3- $\phi$ delta-connected load impedance can be converted to an equivalent wye-connect load impedance using the following relationship

$$
Z_{\Delta}=3 Z_{Y}
$$

The following formulas can be used to determine 3- $\phi$ power for balanced systems.

$$
\begin{aligned}
& \mathbf{S}=P+j Q \\
& |\mathbf{S}|=3 V_{P} I_{P}=\sqrt{3} V_{L} I_{L} \\
& \mathbf{S}=3 \mathbf{V}_{P} \mathbf{I}_{P}^{*}=\sqrt{3} V_{L} I_{L}\left(\cos \theta_{P}+j \sin \theta_{P}\right)
\end{aligned}
$$

For balanced 3- $\phi$ wye- and delta-connected loads

$$
\mathbf{S}=\frac{V_{L}^{2}}{Z_{Y}^{*}} \quad \mathbf{S}=3 \frac{V_{L}^{2}}{Z_{\Delta}^{*}}
$$

where
$\mathbf{S} \quad=$ total 3- $\phi$ complex power (VA)
$|\mathbf{S}|=$ total 3- $\phi$ apparent power (VA)
$P=$ total 3- $\phi$ real power (W)
$Q \quad=$ total 3- $\phi$ reactive power (var)
$\theta_{P} \quad=$ power factor angle of each phase
$V_{L} \quad=\mathrm{rms}$ value of the line-to-line voltage
$V_{L N}=\mathrm{rms}$ value of the line-to-neutral voltage
$I_{L} \quad=\mathrm{rms}$ value of the line current
$I_{P}=\mathrm{rms}$ value of the phase current

For a 3- $\phi$ wye-connected source or load with line-to-neutral voltages

$$
\begin{aligned}
& \mathbf{V}_{a n}=V_{P} \angle 0^{\circ} \\
& \mathbf{V}_{b n}=V_{P} \angle-120^{\circ} \\
& \mathbf{V}_{c n}=V_{P} \angle+120^{\circ}
\end{aligned}
$$

The corresponding line-to-line voltages are

$$
\begin{aligned}
\mathbf{V}_{a b} & =\sqrt{3} V_{P} \angle 30^{\circ} \\
\mathbf{V}_{b c} & =\sqrt{3} V_{P} \angle-90^{\circ} \\
\mathbf{V}_{c a} & =\sqrt{3} V_{P} \angle+150^{\circ}
\end{aligned}
$$

## Transformers (Ideal)



## Turns Ratio

$$
\begin{aligned}
a & =N_{1} / N_{2} \\
a & =\left|\frac{\boldsymbol{V}_{\mathrm{p}}}{\boldsymbol{V}_{\mathrm{s}}}\right|=\left|\frac{\boldsymbol{I}_{\mathrm{s}}}{\boldsymbol{I}_{\mathrm{p}}}\right|
\end{aligned}
$$

The impedance seen at the input is

$$
\boldsymbol{Z}_{\mathrm{P}}=a^{2} \boldsymbol{Z}_{\mathrm{S}}
$$

## AC Machines

The synchronous speed $n_{s}$ for ac motors is given by

$$
n_{s}=120 f / p, \text { where }
$$

$f=$ the line voltage frequency in Hz and
$p=$ the number of poles.
The slip for an induction motor is
slip $=\left(n_{s}-n\right) / n_{s}$, where
$n=$ the rotational speed (rpm).

## DC Machines

The armature circuit of a dc machine is approximated by a series connection of the armature resistance $R_{a}$, the armature inductance $L_{a}$, and a dependent voltage source of value

$$
V_{a}=K_{a} n \phi \quad \text { volts, where }
$$

$K_{a}=$ constant depending on the design,
$n=$ is armature speed in rpm, and
$\phi=$ the magnetic flux generated by the field.
The field circuit is approximated by the field resistance $R_{f}$ in series with the field inductance $L_{f}$. Neglecting saturation, the magnetic flux generated by the field current $I_{f}$ is

$$
\phi=K_{f} I_{f} \quad \text { webers }
$$

The mechanical power generated by the armature is

$$
P_{m}=V_{a} I_{a} \quad \text { watts }
$$

where $I_{a}$ is the armature current. The mechanical torque produced is

$$
T_{m}=(60 / 2 \pi) K_{a} \phi I_{a} \text { newton-meters. }
$$

## ELECTROMAGNETIC DYNAMIC FIELDS

The integral and point form of Maxwell's equations are

$$
\begin{aligned}
& \oint \mathbf{E} \cdot d \mathbf{l}=-\iint_{S}(\partial \mathbf{B} / \partial t) \cdot d \mathbf{S} \\
& \oint \mathbf{H} \cdot d \mathbf{l}=I_{\mathrm{enc}}+\iint_{S}(\partial \mathbf{D} / \partial t) \cdot d \mathbf{S} \\
& \oiint_{S_{V}} \mathbf{D} \cdot d \mathbf{S}=\iiint_{V} \rho d v \\
& \oiint_{S_{V}} \mathbf{B} \cdot d \mathbf{S}=0 \\
& \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t \\
& \nabla \times \mathbf{H}=\mathbf{J}+\partial \mathbf{D} / \partial t \\
& \nabla \cdot \mathbf{D}=\rho \\
& \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

The sinusoidal wave equation in $\mathbf{E}$ for an isotropic homogeneous medium is given by

$$
\nabla^{2} \mathbf{E}=-\omega^{2} \mu \varepsilon \mathbf{E}
$$

The $E M$ energy flow of a volume $V$ enclosed by the surface $S_{V}$ can be expressed in terms of the Poynting's Theorem

$$
\begin{aligned}
-\oiint_{S_{V}}(\mathbf{E} \times \mathbf{H}) \cdot d \mathbf{S} & =\iiint_{V} \mathbf{J} \cdot \mathbf{E} d v \\
& +\partial / \partial t\left\{\iiint_{V}\left(\varepsilon E^{2} / 2+\mu H^{2} / 2\right) d v\right\}
\end{aligned}
$$

where the left-side term represents the energy flow per unit time or power flow into the volume $V$, whereas the $\mathbf{J} \cdot \mathbf{E}$ represents the loss in $V$ and the last term represents the rate of change of the energy stored in the $\mathbf{E}$ and $\mathbf{H}$ fields.

## LOSSLESS TRANSMISSION LINES

The wavelength, $\lambda$, of a sinusoidal signal is defined as the distance the signal will travel in one period.

$$
\lambda=\frac{U}{f}
$$

where $U$ is the velocity of propagation and $f$ is the frequency of the sinusoid.
The characteristic impedance, $Z_{0}$, of a transmission line is the input impedance of an infinite length of the line and is given by

$$
\boldsymbol{Z}_{0}=\sqrt{L / C}
$$

where $L$ and $C$ are the per unit length inductance and capacitance of the line.
The reflection coefficient at the load is defined as

$$
\Gamma=\frac{\boldsymbol{Z}_{L}-\boldsymbol{Z}_{0}}{\boldsymbol{Z}_{L}+\boldsymbol{Z}_{0}}
$$

and the standing wave ratio SWR is

$$
\mathrm{SWR}=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

$\beta=$ Propagation constant $=\frac{2 \pi}{\lambda}$
For sinusoidal voltages and currents:


Voltage across the transmission line:

$$
\boldsymbol{V}(d)=\boldsymbol{V}^{+} e^{j \beta d}+\boldsymbol{V}^{-} e^{-j \beta d}
$$

Current along the transmission line:

$$
\boldsymbol{I}(d)=\boldsymbol{I}^{+} e^{j \beta d}+\boldsymbol{I}^{-} e^{-j \beta d}
$$

where $\boldsymbol{I}^{+}=\boldsymbol{V}^{+} / Z_{0}$ and $\boldsymbol{I}^{-}=-\boldsymbol{V}^{-} / Z_{0}$
Input impedance at d

$$
\boldsymbol{Z}_{i n}(d)=\boldsymbol{Z}_{0} \frac{\boldsymbol{Z}_{L}+j \boldsymbol{Z}_{0} \tan (\beta d)}{\boldsymbol{Z}_{0}+j \boldsymbol{Z}_{L} \tan (\beta d)}
$$

## FOURIER SERIES

Every periodic function $f(t)$ which has the period $T=2 \pi / \omega_{0}$ and has certain continuity conditions can be represented by a series plus a constant

$$
f(t)=a_{0} / 2+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right]
$$

The above holds if $f(t)$ has a continuous derivative $f^{\prime}(t)$ for all $t$. It should be noted that the various sinusoids present in the series are orthogonal on the interval 0 to $T$ and as a result the coefficients are given by

$$
\begin{aligned}
& a_{0}=(1 / T) \int_{0}^{T} f(t) d t \\
& a_{n}=(2 / T) \int_{0}^{T} f(t) \cos \left(n \omega_{0} t\right) d t \quad n=1,2, \cdots \\
& b_{n}=(2 / T) \int_{0}^{T} f(t) \sin \left(n \omega_{0} t\right) d t \quad n=1,2, \cdots
\end{aligned}
$$

The constants $a_{n}$ and $b_{n}$ are the Fourier coefficients of $f(t)$ for the interval 0 to $T$ and the corresponding series is called the Fourier series of $f(t)$ over the same interval. The integrals have the same value when evaluated over any interval of length $T$.
If a Fourier series representing a periodic function is truncated after term $n=N$ the mean square value $F_{N}^{2}$ of the truncated series is given by the Parseval relation. This relation says that the mean-square value is the sum of the mean-square values of the Fourier components, or

$$
F_{N}^{2}=\left(a_{0} / 2\right)^{2}+(1 / 2) \sum_{n=1}^{N}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

and the RMS value is then defined to be the square root of this quantity or $F_{N}$.
Three useful and common Fourier series forms are defined in terms of the following graphs (with $\omega_{o}=2 \pi / T$ ).
Given:

then

$$
f_{1}(t)=\sum_{\substack{n=1 \\(\text { nodd })}}^{\infty}(-1)^{(n-1) / 2}\left(4 V_{o} / n \pi\right) \cos \left(n \omega_{o} t\right)
$$

Given:

then

$$
\begin{aligned}
& f_{2}(t)=\frac{V_{o} \tau}{T}+\frac{2 V_{o} \tau}{T} \sum_{n=1}^{\infty} \frac{\sin (n \pi \tau / T)}{(n \pi \tau / T)} \cos \left(n \omega_{o} t\right) \\
& f_{2}(t)=\frac{V_{o} \tau}{T} \sum_{n=-\infty}^{\infty} \frac{\sin (n \pi \tau / T)}{(n \pi \tau / T)} e^{j n \omega_{o} t}
\end{aligned}
$$

Given:
$f_{3}(t)=$ "a train of impulses with weights $A "$

then
$f_{3}(t)=\sum_{n=-\infty}^{\infty} A \delta(t-n T)$
$f_{3}(t)=(A / T)+(2 A / T) \sum_{n=1}^{\infty} \cos \left(n \omega_{o} t\right)$
$f_{3}(t)=(A / T) \sum_{n=-\infty}^{\infty} e^{j n \omega_{0} t}$

## LAPLACE TRANSFORMS

The unilateral Laplace transform pair

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \\
& f(t)=\frac{1}{2 \pi j} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) e^{s t} d t
\end{aligned}
$$

represents a powerful tool for the transient and frequency response of linear time invariant systems. Some useful Laplace transform pairs are [Note: The last two transforms represent the Final Value Theorem (F.V.T.) and Initial Value Theorem (I.V.T.) respectively. It is assumed that the limits exist.]:

| $\boldsymbol{f}(t)$ | $\boldsymbol{F}(\mathbf{s})$ |
| :--- | :--- |
| $\delta(t)$, Impulse at $t=0$ | 1 |
| $u(t)$, Step at $t=0$ | $1 / \mathrm{s}$ |
| $\mathrm{t}[u(t)]$, Ramp at $t=0$ | $1 / \mathrm{s}^{2}$ |
| $e^{-\alpha t}$ | $1 /(\mathrm{s}+\alpha)$ |
| $t e^{-\alpha t}$ | $1 /(\mathrm{s}+\alpha)^{2}$ |
| $e^{-\alpha t} \sin \beta t$ | $\left.\beta /(\mathrm{s}+\alpha)^{2}+\beta^{2}\right]$ |
| $e^{-\alpha t} \cos \beta t$ | $(\mathrm{~s}+\alpha) /\left[(\mathrm{s}+\alpha)^{2}+\beta^{2}\right]$ |
| $\frac{d^{n} f(t)}{d t^{n}}$ | $s^{n} F(s)-\sum_{m=0}^{n-1} s^{n-m-1} \frac{d^{m} f(0)}{d^{m} t}$ |
| $\int_{0}^{t} f(\tau) d \tau$ | $(1 / s) F(s)$ |
| $\int_{0}^{t} x(t-\tau) h(t) d \tau$ | $H(s) X(s)$ |
| $f(\mathrm{t}-\tau)$ | $e^{-\tau s} F(s)$ |
| $\operatorname{limit}_{t \rightarrow \infty} f(t)$ | $\operatorname{limit}_{s \rightarrow 0} s F(s)$ |
| $\operatorname{limit}_{t \rightarrow 0} f(t)$ | $\operatorname{limit}_{s \rightarrow \infty} s F(s)$ |

## DIFFERENCE EQUATIONS

Difference equations are used to model discrete systems. Systems which can be described by difference equations include computer program variables iteratively evaluated in a loop, sequential circuits, cash flows, recursive processes, systems with time-delay components, etc. Any system whose input $v(t)$ and output $y(t)$ are defined only at the equally spaced intervals $t=k T$ can be described by a difference equation.

## First-Order Linear Difference Equation

A first-order difference equation

$$
y[k]+a_{1} y[k-1]=x[k]
$$

## Second-Order Linear Difference Equation

A second-order difference equation is
$y[k]+a_{1} y[k-1]+a_{2} y[k-2]=x[k]$

## z-Transforms

The transform definition is

$$
F(z)=\sum_{k=0}^{\infty} f[k] z^{-k}
$$

The inverse transform is given by the contour integral

$$
f(k)=\frac{1}{2 \pi j} \oint_{\Gamma} F(z) z^{k-1} d z
$$

and it represents a powerful tool for solving linear shift invariant difference equations. A limited unilateral list of $z$ transform pairs follows [Note: The last two transform pairs represent the Initial Value Theorem (I.V.T.) and the Final Value Theorem (F.V.T.) respectively.]:

| $\boldsymbol{f}[\boldsymbol{k}]$ | $\boldsymbol{F}(z)$ |
| :--- | :--- |
| $\delta[k]$, Impulse at $k=0$ | 1 |
| $u[k]$, Step at $k=0$ | $1 /\left(1-\mathrm{z}^{-1}\right)$ |
| $\boldsymbol{\beta}^{k}$ | $1 /\left(1-\beta z^{-1}\right)$ |
| $y[k-1]$ | $z^{-1} Y(z)+y(-1)$ |
| $y[k-2]$ | $z^{-2} Y(z)+y(-2)+y(-1) z^{-1}$ |
| $y[k+1]$ | $z Y(z)-z y(0)$ |
| $y[k+2]$ | $z^{2} Y(z)-z^{2} y(0)-z y(1)$ |
| $\sum_{m=0}^{\infty} X[k-m] h[m]$ | $H(z) X(z)$ |
| $\operatorname{limit}_{k \rightarrow 0} f[k]$ | $\operatorname{limit}_{z \rightarrow \infty} F(z)$ |
| $\operatorname{limit}_{k \rightarrow \infty} f[k]$ | $\operatorname{limit}_{z \rightarrow 1}\left(1-z^{-1}\right) F(z)$ |
|  |  |

## CONVOLUTION

Continuous-time convolution:

$$
v(t)=x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau
$$

Discrete-time convolution:

$$
v[n]=x[n] * y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]
$$

## DIGITAL SIGNAL PROCESSING

A discrete-time, linear, time-invariant (DTLTI) system with a single input $x[n]$ and a single output $y[n]$ can be described by a linear difference equation with constant coefficients of the form

$$
y[n]+\sum_{i=1}^{k} b_{i} y[n-i]=\sum_{i=0}^{l} a_{i} x[n-i]
$$

If all initial conditions are zero, taking a z-transform yields a transfer function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{l} a_{i} z^{k-i}}{z^{k}+\sum_{i=1}^{k} b_{i} z^{k-i}}
$$

Two common discrete inputs are the unit-step function $u[n]$ and the unit impulse function $\delta[n]$, where

$$
u[n]=\left\{\begin{array}{cc}
0 & n<0 \\
1 & n \geq 0
\end{array}\right\} \quad \text { and } \quad \delta[n]=\left\{\begin{array}{cc}
1 & n=0 \\
0 & n \neq 0
\end{array}\right\}
$$

The impulse response $h[n]$ is the response of a discrete-time system to $x[n]=\delta[n]$.
A finite impulse response (FIR) filter is one in which the impulse response $h[n]$ is limited to a finite number of points:

$$
h[n]=\sum_{i=0}^{k} a_{i} \delta[n-i]
$$

The corresponding transfer function is given by

$$
H(z)=\sum_{i=0}^{k} a_{i} z^{-i}
$$

where $k$ is the order of the filter.
An infinite impulse response (IIR) filter is one in which the impulse response $h[n]$ has an infinite number of points:
$h[n]=\sum_{i=0}^{\infty} a_{i} \delta[n-i]$

## COMMUNICATION THEORY AND CONCEPTS

The following concepts and definitions are useful for communications systems analysis.

## Functions

| Unit step, $u(t)$ | $u(t)= \begin{cases}0 & t<0 \\ 1 & t>0\end{cases}$ |
| :---: | :---: |
| Rectangular pulse, $\Pi(t / \tau)$ | $\Pi(t / \tau)= \begin{cases}1 & \|t / \tau\|<\frac{1}{2} \\ 0 & \|t / \tau\|>\frac{1}{2}\end{cases}$ |
| Triangular pulse, $\Lambda(t / \tau)$ | $\Lambda(t / \tau)= \begin{cases}1-\|t / \tau\| & \|t / \tau\|<1 \\ 0 & \|t / \tau\|>1\end{cases}$ |
| Sinc, $\operatorname{sinc}(a t)$ | $\operatorname{sinc}(a t)=\frac{\sin (a \pi t)}{a \pi t}$ |
| Unit impulse, $\delta(t)$ | $\int_{-\infty}^{+\infty} x\left(t+t_{0}\right) \delta(t) d t=x\left(t_{0}\right)$ <br> for every $x(t)$ defined and continuous at $t=t_{0}$. This is equivalent to $\int_{-\infty}^{+\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)$ |

## The Convolution Integral

$$
\begin{aligned}
x(t) * h(t) & =\int_{-\infty}^{+\infty} x(\lambda) h(t-\lambda) d \lambda \\
& =h(t) * x(t)=\int_{-\infty}^{+\infty} h(\lambda) x(t-\lambda) d \lambda
\end{aligned}
$$

In particular,

$$
x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)
$$

The Fourier Transform and its Inverse

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} d t \\
& x(t)=\int_{-\infty}^{+\infty} X(f) e^{j 2 \pi f t} d f
\end{aligned}
$$

We say that $x(t)$ and $X(f)$ form a Fourier transform pair:

$$
x(t) \leftrightarrow X(f)
$$

Fourier Transform Pairs

| $x(t)$ | $X(f)$ |
| :---: | :---: |
| 1 | $\delta(f)$ |
| $\delta(t)$ | 1 |
| $u(t)$ | $\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}$ |
| $\Pi(t / \tau)$ | $\tau f \operatorname{sinc}(\tau f)$ |
| $\operatorname{sinc}(B t)$ | $\frac{1}{B} \Pi(f / B)$ |
| $\Lambda(t / \tau)$ | $\tau f \operatorname{sinc}^{2}(\tau f)$ |
| $e^{-a t} u(t)$ | $\frac{1}{a+j 2 \pi f} \quad a>0$ |
| $t e^{-a t} u(t)$ | $\frac{1}{(a+j 2 \pi f)^{2}} \quad a>0$ |
| $e^{-a\|t\|}$ | $\frac{2 a}{a^{2}+(2 \pi f)^{2}} \quad a>0$ |
| $e^{-(a t)^{2}}$ | $\frac{\sqrt{\pi}}{a} e^{-(\pi f / a)^{2}}$ |
| $\cos \left(2 \pi f_{0} t+\theta\right)$ | $\frac{1}{2}\left[e^{j \theta} \delta\left(f-f_{0}\right)+e^{-j \theta} \delta\left(f+f_{0}\right)\right]$ |
| $\sin \left(2 \pi f_{0} t+\theta\right)$ | $\frac{1}{2 j}\left[e^{j \theta} \delta\left(f-f_{0}\right)-e^{-j \theta} \delta\left(f+f_{0}\right)\right]$ |
| $\sum_{n=-\infty}^{n=+\infty} \delta\left(t-n T_{s}\right)$ | $f_{s} \sum_{k=-\infty}^{k=+\infty} \delta\left(f-k f_{s}\right) \quad f_{s}=\frac{1}{T_{s}}$ |

## Fourier Transform Theorems

| Linearity | $a x(t)+b y(t)$ | $a X(f)+b Y(f)$ |
| :--- | :---: | :---: |
| Scale change | $x(a t)$ | $\frac{1}{\|a\|} X\left(\frac{f}{a}\right)$ |
| Time reversal | $x(-t)$ | $X(-f)$ |
| Duality | $X(t)$ | $x(-f)$ |
| Time shift | $x\left(t-t_{0}\right)$ | $X(f) e^{-j 2 \pi f_{0}}$ |
| Frequency shift | $x(t) e^{j 2 \pi f_{0} t}$ | $X\left(f-f_{0}\right)$ |
| Modulation | $x(t) \cos 2 \pi f_{0} t$ | $\frac{1}{2} X\left(f-f_{0}\right)$ <br>  <br> Multiplication $X\left(f+f_{0}\right)$ <br> Convolution <br> Differentiation <br> $x(t) y(t)$$d^{n} x(t)$ |
| Integration | $\int_{-\infty}^{t} x(\lambda) d \lambda$ | $X(f) * Y(f)$ |

## Frequency Response and Impulse Response

The frequency response $H(f)$ of a system with input $x(t)$ and output $y(t)$ is given by

$$
H(f)=\frac{Y(f)}{X(f)}
$$

This gives

$$
Y(f)=H(f) X(f)
$$

The response $h(t)$ of a linear time-invariant system to a unitimpulse input $\delta(t)$ is called the impulse response of the system. The response $y(t)$ of the system to any input $x(t)$ is the convolution of the input $x(t)$ with the impulse response $h(t)$ :

$$
\begin{aligned}
y(t) & =x(t) * h(t)=\int_{-\infty}^{+\infty} x(\lambda) h(t-\lambda) d \lambda \\
& =h(t) * x(t)=\int_{-\infty}^{+\infty} h(\lambda) x(t-\lambda) d \lambda
\end{aligned}
$$

Therefore, the impulse response $h(t)$ and frequency response $H(f)$ form a Fourier transform pair:

$$
h(t) \leftrightarrow H(f)
$$

## Parseval's Theorem

The total energy in an energy signal (finite energy) $x(t)$ is given by

$$
\begin{aligned}
E & =\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\int_{-\infty}^{+\infty}|X(f)|^{2} d f \\
& =\int_{-\infty}^{+\infty} G_{x x}(f) d f=\phi_{x x}(0)
\end{aligned}
$$

## Parseval's Theorem for Fourier Series

As described in the following section, a periodic signal $x(t)$ with period $T_{0}$ and fundamental frequency $f_{0}=1 / T_{0}=\omega_{0} / 2 \pi$ can be represented by a complex-exponential Fourier series

$$
x(t)=\sum_{n=-\infty}^{n=+\infty} X_{n} e^{j n 2 \pi f_{0} t}
$$

The average power in the dc component and the first $N$ harmonics is

$$
P=\sum_{n=-N}^{n=+N}\left|X_{n}\right|^{2}=X_{0}^{2}+2 \sum_{n=0}^{n=N}\left|X_{n}\right|^{2}
$$

The total average power in the periodic signal $x(t)$ is given by Parseval's theorem:

$$
P=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}}\left|x(t)^{2}\right| d t=\sum_{n=-\infty}^{n=+\infty}\left|X_{n}\right|^{2}
$$

## AM (Amplitude Modulation)

$$
\begin{aligned}
x_{A M}(t) & =A_{c}[A+m(t)] \cos \left(2 \pi f_{c} t\right) \\
& =A_{c}^{\prime}\left[1+a m_{n}(t)\right] \cos \left(2 \pi f_{c} t\right)
\end{aligned}
$$

The modulation index is $a$, and the normalized message is

$$
m_{n}(t)=\frac{m(t)}{\max |m(t)|}
$$

The efficiency $\eta$ is the percent of the total transmitted power that contains the message.

$$
\eta=\frac{a^{2}<m_{n}^{2}(t)>}{1+a^{2}<m_{n}^{2}(t)>} 100 \text { percent }
$$

where the mean-squared value or normalized average power in $m_{n}(t)$ is

$$
<m_{n}^{2}(t)>=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T}\left|m_{n}(t)\right|^{2} d t
$$

If $M(f)=0$ for $|f|>W$, then the bandwidth of $x_{A M}(t)$ is $2 W$. AM signals can be demodulated with an envelope detector or a synchronous demodulator.

## DSB (Double-Sideband Modulation)

$$
x_{D S B}(t)=A_{c} m(t) \cos \left(2 \pi f_{c} t\right)
$$

If $M(f)=0$ for $|f|>W$, then the bandwidth of $m(t)$ is $W$ and the bandwidth of $x_{D S B}(t)$ is $2 W$. DSB signals must be demodulated with a synchronous demodulator. A Costas loop is often used.

## SSB (Single-Sideband Modulation)

Lower Sideband:

$$
x_{L S B}(t) \leftrightarrow X_{L S B}(f)=X_{D S B}(f) \Pi\left(\frac{f}{2 f_{c}}\right)
$$

Upper Sideband:

$$
x_{U S B}(t) \leftrightarrow X_{U S B}(f)=X_{D S B}(f)\left[1-\Pi\left(\frac{f}{2 f_{c}}\right)\right]
$$

In either case, if $M(f)=0$ for $|f|>W$, then the bandwidth of $x_{L S B}(t)$ or of $x_{U S B}(t)$ is $W$. SSB signals can be demodulated with a synchronous demodulator or by carrier reinsertion and envelope detection.

## Angle Modulation

$$
x_{A n g}(t)=A_{c} \cos \left[2 \pi f_{c} t+\phi(t)\right]
$$

The phase deviation $\phi(t)$ is a function of the message $m(t)$. The instantaneous phase is

$$
\phi_{i}(t)=2 \pi f_{c} t+\phi(t) \text { radians }
$$

The instantaneous frequency is

$$
\omega_{i}(t)=\frac{d}{d t} \phi_{i}(t)=2 \pi f_{c}+\frac{d}{d t} \phi(t) \text { radians } / \mathrm{s}
$$

The frequency deviation is

$$
\Delta \omega(t)=\frac{d}{d t} \phi(t) \text { radians } / \mathrm{s}
$$

## PM (Phase Modulation)

The phase deviation is

$$
\phi(t)=k_{P} m(t) \text { radians }
$$

## FM (Frequency Modulation)

The phase deviation is

$$
\phi(t)=k_{F} \int_{-\infty}^{t} m(\lambda) d \lambda \text { radians. }
$$

The frequency-deviation ratio is

$$
D=\frac{k_{F} \max |m(t)|}{2 \pi W}
$$

where $W$ is the message bandwidth. If $D \ll 1$ (narrowband FM), the $98 \%$ power bandwidth $B$ is

$$
B \cong 2 W
$$

If $D>1$, (wideband FM ) the $98 \%$ power bandwidth $B$ is given by Carson's rule:

$$
B \cong 2(D+1) W
$$

The complete bandwidth of an angle-modulated signal is infinite.
A discriminator or a phase-lock loop can demodulate anglemodulated signals.

## Sampled Messages

A lowpass message $m(t)$ can be exactly reconstructed from uniformly spaced samples taken at a sampling frequency of $f_{s}=1 / T_{s}$

$$
f_{s} \geq 2 W \text { where } M(f)=0 \text { for }|f|>W
$$

The frequency $2 W$ is called the Nyquist frequency. Sampled messages are typically transmitted by some form of pulse modulation. The minimum bandwidth $B$ required for transmission of the modulated message is inversely proportional to the pulse length $\tau$.

$$
B \propto \frac{1}{\tau}
$$

Frequently, for approximate analysis

$$
B \cong \frac{1}{2 \tau}
$$

is used as the minimum bandwidth of a pulse of length $\tau$.

Ideal-Impulse Sampling

$$
\begin{gathered}
x_{\delta}(t)=m(t) \sum_{n=-\infty}^{n=+\infty} \delta\left(t-n T_{s}\right)=\sum_{n=-\infty}^{n=+\infty} m\left(n T_{s}\right) \delta\left(t-n T_{s}\right) \\
X_{\delta}(f)=M(f) * f_{s} \sum_{k=-\infty}^{k=+\infty} \delta\left(f-k f_{s}\right) \\
=f_{s} \sum_{k=-\infty}^{k=+\infty} M\left(f-k f_{s}\right)
\end{gathered}
$$

The message $m(t)$ can be recovered from $x_{\delta}(t)$ with an ideal lowpass filter of bandwidth $W$.

## PAM (Pulse-Amplitude Modulation)

## Natural Sampling:

A PAM signal can be generated by multiplying a message by a pulse train with pulses having duration $\tau$ and period $T_{\mathrm{s}}=1 / f_{s}$

$$
\begin{gathered}
x_{N}(t)=m(t) \sum_{n=-\infty}^{n=+\infty} \Pi\left[\frac{t-n T_{s}}{\tau}\right]=\sum_{n=-\infty}^{n=+\infty} m(t) \Pi\left[\frac{t-n T_{s}}{\tau}\right] \\
X_{N}(f)=\tau f_{s} \sum_{k=-\infty}^{k=+\infty} \operatorname{sinc}\left(k \tau f_{s}\right) M\left(f-k f_{s}\right)
\end{gathered}
$$

The message $m(t)$ can be recovered from $x_{N}(t)$ with an ideal lowpass filter of bandwidth $W$.

## PCM (Pulse-Code Modulation)

PCM is formed by sampling a message $m(t)$ and digitizing the sample values with an $\mathrm{A} / \mathrm{D}$ converter. For an $n$-bit binary word length, transmission of a pulse-code-modulated lowpass message $m(t)$, with $M(f)=0$ for $f>W$, requires the transmission of at least $2 n W$ binary pulses per second. A binary word of length $n$ bits can represent $q$ quantization levels:

$$
q=2^{n}
$$

The minimum bandwidth required to transmit the PCM message will be

$$
B \propto n W=2 W \log _{2} q
$$

## ANALOG FILTER CIRCUITS

Analog filters are used to separate signals with different frequency content. The following circuits represent simple analog filters used in communications and signal processing.

First-Order Low-Pass Filters

| $\|\mathbf{H}(j \omega)\|$ |
| :---: |
|  $\left\|\mathbf{H}\left(j \omega_{c}\right)\right\|=\frac{1}{\sqrt{2}}\|\mathbf{H}(0)\|$ <br> Frequency Response |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{R_{\mathrm{P}}}{R_{1}} \bullet \frac{1}{1+s R_{\mathrm{P}} C} \\ & R_{\mathrm{P}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad \omega_{c}=\frac{1}{R_{\mathrm{P}} C} \end{aligned}$ |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{R_{2}}{R_{\mathrm{S}}} \bullet \frac{1}{1+s L / R_{\mathrm{S}}} \\ & R_{\mathrm{S}}=R_{1}+R_{2} \quad \omega_{c}=\frac{R_{\mathrm{S}}}{L} \end{aligned}$ |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{I}_{2}}{\mathbf{I}_{1}}=\frac{R_{\mathrm{P}}}{R_{2}} \bullet \frac{1}{1+s R_{\mathrm{P}} C} \\ & R_{\mathrm{P}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad \omega_{c}=\frac{1}{R_{\mathrm{P}} C} \end{aligned}$ |

First-Order High-Pass Filters

|  $\left\|\mathbf{H}\left(j \omega_{c}\right)\right\|=\frac{1}{\sqrt{2}}\|\mathbf{H}(j \infty)\|$ <br> Frequency Response |
| :---: |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{R_{2}}{R_{\mathrm{S}}} \bullet \frac{s R_{\mathrm{S}} C}{1+s R_{\mathrm{S}} C} \\ & R_{\mathrm{S}}=R_{1}+R_{2} \quad \omega_{c}=\frac{1}{R_{\mathrm{S}} C} \end{aligned}$ |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{R_{\mathrm{P}}}{R_{1}} \bullet \frac{s L / R_{\mathrm{P}}}{1+s L / R_{\mathrm{P}}} \\ & R_{\mathrm{P}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad \omega_{c}=\frac{R_{\mathrm{P}}}{L} \end{aligned}$ |
| $\begin{aligned} & \mathbf{H}(s)=\frac{\mathbf{I}_{2}}{\mathbf{I}_{1}}=\frac{R_{\mathrm{P}}}{R_{2}} \bullet \frac{s L / R_{\mathrm{P}}}{1+s L / R_{\mathrm{P}}} \\ & R_{\mathrm{P}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad \omega_{c}=\frac{R_{\mathrm{P}}}{L} \end{aligned}$ |

Band-Pass Filters


Band-Reject Filters


Phase-Lead Filter


Frequency Response

$\mathbf{H}(s)=\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{R_{\mathrm{P}}}{R_{1}} \bullet \frac{1+s R_{1} C}{1+s R_{\mathrm{P}} C}$
$=\frac{\omega_{1}}{\omega_{2}} \bullet \frac{1+s / \omega_{1}}{1+s / \omega_{2}}$
$R_{\mathrm{P}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad \omega_{1}=\frac{1}{R_{1} C} \quad \omega_{2}=\frac{1}{R_{\mathrm{P}} C}$
$\omega_{m}=\sqrt{\omega_{1} \omega_{2}} \quad \max \left\{\angle \mathbf{H}\left(j \omega_{m}\right)\right\}=\phi_{m}$
$\phi_{m}=\arctan \sqrt{\frac{\omega_{2}}{\omega_{1}}}-\arctan \sqrt{\frac{\omega_{1}}{\omega_{2}}}$
$=\arctan \frac{\omega_{2}-\omega_{1}}{2 \omega_{m}}$
$\mathbf{H}(0)=\frac{R_{\mathrm{P}}}{R_{1}}=\frac{\omega_{1}}{\omega_{2}}$
$\left|\mathbf{H}\left(j \omega_{m}\right)\right|=\sqrt{\frac{\omega_{1}}{\omega_{2}}}$
$\mathbf{H}(j \infty)=1$

Phase-Lag Filter

| Frequency Response |
| :---: |
| $\begin{aligned} \mathbf{H}(s) & =\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}=\frac{1+s R_{2} C}{1+s R_{\mathrm{S}} C} \\ & =\frac{1+s / \omega_{2}}{1+s / \omega_{1}} \end{aligned}$ |
| $\begin{aligned} & R_{\mathrm{S}}= R_{1}+R_{2} \quad \omega_{1}=\frac{1}{R_{\mathrm{S}} C} \quad \omega_{2}=\frac{1}{R_{2} C} \\ & \omega_{m}=\sqrt{\omega_{1} \omega_{2}} \quad \min \left\{\angle \mathbf{H}\left(j \omega_{m}\right)\right\}=\phi_{m} \\ & \phi_{m}= \arctan \sqrt{\frac{\omega_{1}}{\omega_{2}}}-\arctan \sqrt{\frac{\omega_{2}}{\omega_{1}}} \\ &=\arctan \frac{\omega_{1}-\omega_{2}}{2 \omega_{m}} \\ & \mathbf{H}(0)=1 \\ &\left\|\mathbf{H}\left(j \omega_{m}\right)\right\|=\sqrt{\frac{\omega_{1}}{\omega_{2}}} \\ & \mathbf{H}(j \infty)=\frac{R_{2}}{R_{\mathrm{S}}}=\frac{\omega_{1}}{\omega_{2}} \end{aligned}$ |

## OPERATIONAL AMPLIFIERS

## Ideal

$v_{\mathrm{o}}=A\left(v_{1}-v_{2}\right)$
where
$A$ is large ( $>10^{4}$ ), and
$v_{1}-v_{2}$ is small enough so as not to saturate the amplifier.
For the ideal operational amplifier, assume that the input currents are zero and that the gain $A$ is infinite so when operating linearly $v_{2}-v_{1}=0$.
For the two-source configuration with an ideal operational amplifier,


$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{a}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{b}
$$

If $v_{\mathrm{a}}=0$, we have a non-inverting amplifier with

$$
v_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{b}
$$

If $v_{\mathrm{b}}=0$, we have an inverting amplifier with

$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{a}
$$

## SOLID-STATE ELECTRONICS AND DEVICES

Conductivity of a semiconductor material:

$$
\sigma=q\left(n \mu_{n}+p \mu_{p}\right), \text { where }
$$

$\mu_{n} \equiv$ electron mobility,
$\mu_{p} \equiv$ hole mobility,
$n \equiv$ electron concentration,
$p \equiv$ hole concentration, and
$q \equiv$ charge on an electron $\left(1.6 \times 10^{-19} \mathrm{C}\right)$.
Doped material:
$p$-type material; $p_{p} \approx N_{a}$
$n$-type material; $n_{n} \approx N_{d}$
Carrier concentrations at equilibrium

$$
(p)(n)=n_{i}^{2}, \text { where }
$$

$n_{i} \equiv$ intrinsic concentration.

Built-in potential (contact potential) of a $p-n$ junction:

$$
V_{0}=\frac{k T}{q} \ln \frac{N_{a} N_{d}}{n_{i}^{2}}
$$

Thermal voltage

$$
V_{T}=\frac{k T}{q} \approx 0.026 \mathrm{~V} \text { at } 300^{\circ} \mathrm{K}
$$

$N_{a}=$ acceptor concentration,
$N_{d}=$ donor concentration,
$T=$ temperature (K), and
$k=$ Boltzmann's Constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Capacitance of abrupt $p-n$ junction diode

$$
C(V)=C_{o} / \sqrt{1-V / V_{b i}}, \text { where }
$$

$C_{o}=$ junction capacitance at $V=0$,
$V=$ potential of anode with respect to cathode, and
$V_{b i}=$ junction contact potential.
Resistance of a diffused layer is

$$
R=R_{\mathrm{s}}(L / W), \text { where }
$$

$R_{\mathrm{s}}=$ sheet resistance $=\rho / d$ in ohms per square
$\rho=$ resistivity,
$d=$ thickness,
$L=$ length of diffusion, and
$W=$ width of diffusion.

## TABULATED CHARACTERISTICS FOR:

Diodes
Bipolar Junction Transistor (BJT)
N-Channel JFET and MOSFET
Enhancement MOSFETs
are on the following pages.

| DIODES |  |  |  |
| :---: | :---: | :---: | :---: |
| Device and Schematic Symbol | Ideal I - V <br> Relationship | Piecewise-Linear Approximation of The $I-V$ Relationship | Mathematical $I-V$ Relationship |
| (Junction Diode) |  |  | $\begin{aligned} & \quad \text { Shockley Equation } \\ & i_{D} \approx I_{s}\left[e^{\left(v_{D} / \eta V_{T}\right)}-1\right] \\ & \text { where } \\ & I_{s}=\text { saturation current } \\ & \eta=\text { emission coefficient, typically } 1 \text { for } \mathrm{Si} \\ & V_{T}=\text { thermal voltage }=\frac{\mathrm{kT}}{\mathrm{q}} \end{aligned}$ |
| (Zener Diode) |  |  | Same as above. |


| NPN Bipolar Junction Transistor (BJT) |  |  |  |
| :---: | :---: | :---: | :---: |
| Schematic Symbol | Mathematical Relationships | Large-Signal (DC) Equivalent Circuit | Low-Frequency Small-Signal (AC) Equivalent Circuit |
| NPN - Transistor | $\begin{aligned} i_{E} & =i_{B}+i_{C} \\ i_{C} & =\beta i_{B} \\ i_{C} & =\alpha i_{E} \\ \alpha & =\beta /(\beta+1) \\ i_{C} & \approx I_{S} e^{\left(V_{B E} / V_{T}\right)} \\ I_{S} & =\text { emitter saturation } \\ & \quad \text { current } \\ V_{T} & =\text { thermal voltage } \end{aligned}$ <br> Note: These relationships are valid in the active mode of operation. | Active Region: <br> base emitter junction forward biased; base collector junction reverse biased <br> Saturation Region: both junctions forward biased | Low Frequency: $\begin{aligned} g_{m} & \approx I_{C Q} / V_{T} \\ r_{\pi} & \approx \beta / g_{m}, \\ r_{o} & =\left[\frac{\partial v_{C E}}{\partial i_{c}}\right]_{Q_{\text {point }}} \approx \frac{V_{A}}{I_{C Q}} \end{aligned}$ <br> where <br> $I_{C Q}=\mathrm{dc}$ collector current at the $Q_{\text {point }}$ <br> $V_{A}=$ Early voltage |
|  | Same as for NPN with curren directions and voltage polarities reversed. | Cutoff Region: <br> both junctions reversed biased | Same as for NPN. |
|  |  | Same as NPN with current directions and voltage polarities reversed |  |


| N-Channel Junction Field Effect Transistors (JFETs) and Depletion MOSFETs (Low and Medium Frequency) |  |  |
| :---: | :---: | :---: |
| Schematic Symbol | Mathematical Relationships | Small-Signal (AC) Equivalent Circuit |
| N-CHANNEL JFET <br> P-CHANNEL JFET <br> N-CHANNEL DEPLETION MOSFET (NMOS) <br> SIMPLIFIED SYMBOL |  | $g_{m}=\frac{2 \sqrt{I_{D S S} I_{D}}}{\left\|V_{p}\right\|}$ in saturation region <br> where $r_{d}=\left\|\frac{\partial v_{d s}}{\partial i_{d}}\right\|_{\varrho_{\text {point }}}$ |


| P-Channel Depletion |  |  |
| :--- | :--- | :--- |
| MOSFET (PMOS) | Same as for N-channel with current directions <br> and voltage polarities reversed. | Same as for N-channel. |


| Enhancement MOSFET (Low and Medium Frequency) |  |  |
| :---: | :---: | :---: |
| Schematic Symbol | Mathematical Relationships | Small-Signal (AC) Equivalent Circuit |
| N-CHANNEL ENHANCEMENT MOSFET (NMOS) <br> SIMPLIFIED SYMBOL | $\begin{aligned} & \text { Cutoff Region: } v_{G S}<V_{t} \\ & i_{D}=0 \\ & \frac{\text { Triode Region: } v_{G S}>V_{t} \text { and } v_{G D}>V_{t}}{i_{D}=K\left[2 v_{D S}\left(v_{G S}-V_{t}\right)-v_{D S}^{2}\right]} \\ & \frac{\text { Saturation Region: } v_{G S}>V_{t} \text { and } v_{G D}<V_{t}}{i_{D}=K\left(v_{G S}-V_{t}\right)^{2}} \\ & \text { where } \\ & K=\text { conductivity factor } \\ & V_{t}=\text { threshold voltage } \end{aligned}$ | $g_{m}=2 K\left(v_{G S}-V_{t}\right)$ in saturation region <br> where $r_{d}=\left\|\frac{\partial v_{d s}}{\partial i_{d}}\right\|_{Q_{\text {point }}}$ |
| P-CHANNEL ENHANCEMENT MOSFET (PMOS) <br> SIMPLIFIED SYMBOL | Same as for N -channel with current directions and voltage polarities reversed. | Same as for N-channel. |

## ELECTRICAL AND COMPUTER ENGINEERING (continued)

## NUMBER SYSTEMS AND CODES

An unsigned number of base- $r$ has a decimal equivalent $D$ defined by

$$
D=\sum_{k=0}^{n} a_{k} r^{k}+\sum_{i=1}^{m} a_{i} r^{-i}, \text { where }
$$

$a_{k}=$ the $(k+1)$ digit to the left of the radix point and
$a_{i}=$ the $i$ th digit to the right of the radix point.

## Binary Number System

In digital computers, the base-2, or binary, number system is normally used. Thus the decimal equivalent, D , of a binary number is given by
$\mathrm{D}=a_{\mathrm{k}} 2^{\mathrm{k}}+a_{\mathrm{k}-1} 2^{\mathrm{k}-1}+\ldots+a_{0}+a_{-1} 2^{-1}+\ldots$
Since this number system is so widely used in the design of digital systems, we use a short-hand notation for some powers of two:
$2^{10}=1,024$ is abbreviated " K " or "kilo"
$2^{20}=1,048,576$ is abbreviated " M " or "mega"
Signed numbers of base- $r$ are often represented by the radix complement operation. If $M$ is an $N$-digit value of base- $r$, the radix complement $R(M)$ is defined by

$$
R(M)=r^{N}-M
$$

The 2's complement of an $N$-bit binary integer can be written

$$
\text { 2's Complement }(M)=2^{\mathrm{N}}-\mathrm{M}
$$

This operation is equivalent to taking the 1 's complement (inverting each bit of M ) and adding one.
The following table contains equivalent codes for a four-bit binary value.

| Binary <br> Base-2 | Decimal <br> Base-10 | Hexa- <br> decimal <br> Base-16 | Octal <br> Base-8 | BCD <br> Code | Gray <br> Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0 | 0 | 0 | 0 | 0000 |
| 0001 | 1 | 1 | 1 | 1 | 0001 |
| 0010 | 2 | 2 | 2 | 2 | 0011 |
| 0011 | 3 | 3 | 3 | 3 | 0010 |
| 0100 | 4 | 4 | 4 | 4 | 0110 |
| 0101 | 5 | 5 | 5 | 5 | 0111 |
| 0110 | 6 | 6 | 6 | 6 | 0101 |
| 0111 | 7 | 7 | 7 | 7 | 0100 |
| 1000 | 8 | 8 | 10 | 8 | 1100 |
| 1001 | 9 | 9 | 11 | 9 | 1101 |
| 1010 | 10 | A | 12 | --- | 1111 |
| 1011 | 11 | B | 13 | --- | 1110 |
| 1100 | 12 | C | 14 | --- | 1010 |
| 1101 | 13 | D | 15 | --- | 1011 |
| 1110 | 14 | E | 16 | --- | 1001 |
| 1111 | 15 | F | 17 | --- | 1000 |

## LOGIC OPERATIONS AND BOOLEAN ALGEBRA

Three basic logic operations are the "AND (•)," "OR (+)," and "Exclusive-OR $\oplus$ " functions. The definition of each function, its logic symbol, and its Boolean expression are given in the following table.

| Function <br> Inputs |  |  | $\mathrm{B}_{\mathrm{B}}^{\mathrm{A}}-\underset{\mathrm{XOR}}{C}$ |
| :---: | :---: | :---: | :---: |
| $A B$ | $C=A \cdot B$ | $C=A+B$ | $C=A \oplus B$ |
| 00 | 0 | 0 | 0 |
| 01 | 0 | 1 | 1 |
| 10 | 0 | 1 | 1 |
| 11 | 1 | 1 | 0 |

As commonly used, $A$ AND $B$ is often written $A B$ or $A \cdot B$. The not operator inverts the sense of a binary value $(0 \rightarrow 1,1 \rightarrow 0)$

## NOT OPERATOR



| Input | Output |
| :---: | :---: |
| $\boldsymbol{A}$ | $\boldsymbol{C}=\overline{\boldsymbol{A}}$ |
| 0 | 1 |
| 1 | 0 |

## DeMorgan's Theorems

first theorem: $\overline{A+B}=\bar{A} \cdot \bar{B}$
second theorem: $\overline{A \cdot B}=\bar{A}+\bar{B}$
These theorems define the NAND gate and the NOR gate. Logic symbols for these gates are shown below.
NAND Gates: $\overline{A \cdot B}=\bar{A}+\bar{B}$


NOR Gates: $\overline{A+B}=\bar{A} \cdot \bar{B}$


## FLIP-FLOPS

A flip-flop is a device whose output can be placed in one of two states, 0 or 1 . The flip-flop output is synchronized with a clock (CLK) signal. $Q_{n}$ represents the value of the flip-flop output before CLK is applied, and $Q_{n+1}$ represents the output after CLK has been applied. Three basic flip-flops are described below.


| Composite Flip-Flop State Transition |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{Q}_{\boldsymbol{n}}$ | $\boldsymbol{Q}_{\boldsymbol{n} \boldsymbol{+}}$ | $\boldsymbol{S}$ | $\boldsymbol{R}$ | $\boldsymbol{J}$ | $\boldsymbol{K}$ | $\boldsymbol{D}$ |
| 0 | 0 | 0 | x | 0 | x | 0 |
| 0 | 1 | 1 | 0 | 1 | x | 1 |
| 1 | 0 | 0 | 1 | x | 1 | 0 |
| 1 | 1 | x | 0 | x | 0 | 1 |

## Switching Function Terminology

Minterm, $m_{i}$ - A product term which contains an occurrence of every variable in the function.
Maxterm, $\mathrm{M}_{\mathrm{i}}$ - A sum term which contains an occurrence of every variable in the function.
Implicant - A Boolean algebra term, either in sum or product form, which contains one or more minterms or maxterms of a function.
Prime Implicant - An implicant which is not entirely contained in any other implicant.
Essential Prime Implicant - A prime implicant which contains a minterm or maxterm which is not contained in any other prime implicant.

A function can be described as a sum of minterms using the notation

$$
\begin{aligned}
\mathrm{F}(\mathrm{ABCD}) & =\Sigma \mathrm{m}(\mathrm{~h}, \mathrm{i}, \mathrm{j}, \ldots) \\
& =\mathrm{m}_{\mathrm{h}}+\mathrm{m}_{\mathrm{i}}+\mathrm{m}_{\mathrm{j}}+\ldots
\end{aligned}
$$

A function can be described as a product of maxterms using the notation

$$
\begin{aligned}
\mathrm{G}(\mathrm{ABCD}) & =\Pi M(\mathrm{~h}, \mathrm{i}, \mathrm{j}, \ldots) \\
& =\mathrm{M}_{\mathrm{h}} \cdot \mathrm{M}_{\mathrm{i}} \cdot \mathrm{M}_{\mathrm{j}} \ldots .
\end{aligned}
$$

A function represented as a sum of minterms only is said to be in canonical sum of products (SOP) form. A function represented as a product of maxterms only is said to be in canonical product of sums (POS) form. A function in canonical SOP form is often represented as a minterm list, while a function in canonical POS form is often represented as a maxterm list.
A Karnaugh Map (K-Map) is a graphical technique used to represent a truth table. Each square in the K-Map represents one minterm, and the squares of the K-Map are arranged so that the adjacent squares differ by a change in exactly one variable. A four-variable K-Map with its corresponding minterms is shown below. K-Maps are used to simplify switching functions by visually identifying all essential prime implicants.

## Four-variable Karnaugh Map



## INDUSTRIAL ENGINEERING

## LINEAR PROGRAMMING

The general linear programming (LP) problem is:

$$
\text { Maximize } Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

Subject to:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, \ldots, x_{n} \geq 0
\end{aligned}
$$

An LP problem is frequently reformulated by inserting non-negative slack and surplus variables. Although these variables usually have zero costs (depending on the application), they can have non-zero cost coefficients in the objective function. A slack variable is used with a "less than" inequality and transforms it into an equality. For example, the inequality $5 x_{1}+3 x_{2}+2 x_{3} \leq 5$ could be changed to $5 x_{1}+3 x_{2}+2 x_{3}+s_{1}=5$ if $s_{1}$ were chosen as a slack variable. The inequality $3 x_{1}+x_{2}-4 x_{3} \geq 10$ might be transformed into $3 x_{1}+x_{2}-4 x_{3}-s_{2}=10$ by the addition of the surplus variable $s_{2}$. Computer printouts of the results of processing an LP usually include values for all slack and surplus variables, the dual prices, and the reduced costs for each variable.

## Dual Linear Program

Associated with the above linear programming problem is another problem called the dual linear programming problem. If we take the previous problem and call it the primal problem, then in matrix form the primal and dual problems are respectively:

## Primal

Maximize $Z=\boldsymbol{c x}$
Subject to: $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$

$$
x \geq 0
$$

$$
y \geq 0
$$

It is assumed that if $\boldsymbol{A}$ is a matrix of size $[m \times n]$, then $\boldsymbol{y}$ is an $[1 \times m]$ vector, $\boldsymbol{c}$ is an $[1 \times n]$ vector, $\boldsymbol{b}$ is an $[m \times 1]$ vector, and $\boldsymbol{x}$ is an $[n \times 1]$ vector.

## Network Optimization

Assume we have a graph $G(N, A)$ with a finite set of nodes $N$ and a finite set of arcs $A$. Furthermore, let
$N=\{1,2, \ldots, n\}$
$x_{i j}=$ flow from node ito node $j$
$c_{i j}=$ cost per unit flow from $i$ to $j$
$u_{i j}=$ capacity of arc $(i, j)$
$b_{i}=$ net flow generated at node $i$
We wish to minimize the total cost of sending the available supply through the network to satisfy the given demand. The minimal cost flow model is formulated as shown below:
$\operatorname{Minimize} Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}$
subject to
$\sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n} x_{j i}=b_{i}$ for each node $i \in N$
and
$0 \leq x_{i j} \leq u_{i j}$ for each arc $(i, j) \in A$
The constraints on the nodes represent a conservation of flow relationship. The first summation represents total flow out of node $i$, and the second summation represents total flow into node $i$. The net difference generated at node $i$ is equal to $b_{i}$.
Many models, such as shortest-path, maximal-flow, assignment and transportation models can be reformulated as minimal-cost network flow models.

## STATISTICAL QUALITY CONTROL

## Average and Range Charts

| $n$ | $A_{2}$ | $D_{3}$ | $D_{4}$ |
| :---: | :---: | :---: | :---: |
| 2 | 1.880 | 0 | 3.268 |
| 3 | 1.023 | 0 | 2.574 |
| 4 | 0.729 | 0 | 2.282 |
| 5 | 0.577 | 0 | 2.114 |
| 6 | 0.483 | 0 | 2.004 |
| 7 | 0.419 | 0.076 | 1.924 |
| 8 | 0.373 | 0.136 | 1.864 |
| 9 | 0.337 | 0.184 | 1.816 |
| 10 | 0.308 | 0.223 | 1.777 |
| $X_{i}=$ an individual observation |  |  |  |
|  | the sample size of a group |  |  |
| $k$ | the number of groups |  |  |
| $R$ | smallest observations in a sample of size $n$. |  |  |

$\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$
$\overline{\bar{X}}=\frac{\bar{X}_{1}+\bar{X}_{2}+\ldots+\bar{X}_{k}}{k}$
$\bar{R}=\frac{R_{1}+R_{2}+\ldots+R_{k}}{k}$
The $R$ Chart formulas are:
$C L_{R}=\bar{R}$
$U C L_{R}=D_{4} \bar{R}$
$L C L_{R}=D_{3} \bar{R}$
The $\bar{X}$ Chart formulas are:
$C L_{X}=\overline{\bar{X}}$
$U C L_{X}=\overline{\bar{X}}+A_{2} \bar{R}$
$L C L_{X}=\overline{\bar{X}}-A_{2} \bar{R}$

Standard Deviation Charts

| $\boldsymbol{n}$ | $\boldsymbol{A}_{\mathbf{3}}$ | $\boldsymbol{B}_{\mathbf{3}}$ | $\boldsymbol{B}_{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: |
| 2 | 2.659 | 0 | 3.267 |
| 3 | 1.954 | 0 | 2.568 |
| 4 | 1.628 | 0 | 2.266 |
| 5 | 1.427 | 0 | 2.089 |
| 6 | 1.287 | 0.030 | 1.970 |
| 7 | 1.182 | 0.119 | 1.882 |
| 8 | 1.099 | 0.185 | 1.815 |
| 9 | 1.032 | 0.239 | 1.761 |
| 10 | 0.975 | 0.284 | 1.716 |

$U C L_{X}=\overline{\bar{X}}+A_{3} \bar{S}$
$C L_{X}=\overline{\bar{X}}$
$L C L_{X}=\overline{\bar{X}}-A_{3} \bar{S}$
$U C L_{S}=B_{4} \bar{S}$
$C L_{S}=\bar{S}$
$L C L_{S}=B_{3} \bar{S}$

## Approximations

The following table and equations may be used to generate initial approximations of the items indicated.

| $\boldsymbol{n}$ | $\boldsymbol{c}_{\boldsymbol{4}}$ | $\boldsymbol{d}_{\mathbf{2}}$ | $\boldsymbol{d}_{\mathbf{3}}$ |
| :---: | :---: | :---: | :---: |
| 2 | 0.7979 | 1.128 | 0.853 |
| 3 | 0.8862 | 1.693 | 0.888 |
| 4 | 0.9213 | 2.059 | 0.880 |
| 5 | 0.9400 | 2.326 | 0.864 |
| 6 | 0.9515 | 2.534 | 0.848 |
| 7 | 0.9594 | 2.704 | 0.833 |
| 8 | 0.9650 | 2.847 | 0.820 |
| 9 | 0.9693 | 2.970 | 0.808 |
| 10 | 0.9727 | 3.078 | 0.797 |

$\hat{\sigma}=\overline{\mathrm{R}} / \mathrm{d}_{2}$
$\hat{\sigma}=\overline{\mathrm{S}} / \mathrm{c}_{4}$
$\sigma_{R}=\mathrm{d}_{3} \hat{\sigma}$
$\sigma_{s}=\hat{\sigma} \sqrt{1-c_{4}^{2}}$, where
$\hat{\sigma}=$ an estimate of $\sigma$,
$\sigma_{R}=$ an estimate of the standard deviation of the ranges of the samples, and
$\sigma_{S}=$ an estimate of the standard deviation of the standard deviations of the samples.

## Tests for Out of Control

1. A single point falls outside the (three sigma) control limits.
2. Two out of three successive points fall on the same side of and more than two sigma units from the center line.
3. Four out of five successive points fall on the same side of and more than one sigma unit from the center line.
4. Eight successive points fall on the same side of the center line.

## PROCESS CAPABILITY

$C_{p k}=\min \left(\frac{\mu-L S L}{3 \sigma}, \frac{U S L-\mu}{3 \sigma}\right)$, where
$\mu$ and $\sigma$ are the process mean and standard deviation, respectively, and $L S L$ and $U S L$ are the lower and upper specification limits, respectively.

## QUEUEING MODELS <br> \section*{Definitions}

$P_{n}=$ probability of $n$ units in system,
$L=$ expected number of units in the system,
$L_{q}=$ expected number of units in the queue,
$W=$ expected waiting time in system,
$W_{q}=$ expected waiting time in queue,
$\lambda=$ mean arrival rate (constant),
$\tilde{\lambda}=$ effective arrival rate,
$\mu=$ mean service rate (constant),
$\rho=$ server utilization factor, and
$s=$ number of servers.
Kendall notation for describing a queueing system:
$A / B / s / M$
$A=$ the arrival process,
$B=$ the service time distribution,
$s=$ the number of servers, and
$M=$ the total number of customers including those in service.
Fundamental Relationships
$L=\lambda W$
$L_{q}=\lambda W_{q}$
$W=W_{q}+1 / \mu$
$\rho=\lambda /(s \mu)$

## Single Server Models ( $s=1$ )

Poisson Input-Exponential Service Time: $M=\infty$
$P_{0}=1-\lambda / \mu=1-\rho$
$P_{n}=(1-\rho) \rho^{n}=P_{0} \rho^{n}$
$L=\rho /(1-\rho)=\lambda /(\mu-\lambda)$
$L_{q}=\lambda^{2} /[\mu(\mu-\lambda)]$
$W=1 /[\mu(1-\rho)]=1 /(\mu-\lambda)$
$W_{q}=W-1 / \mu=\lambda /[\mu(\mu-\lambda)]$
Finite queue: $M<\infty$
$\tilde{\lambda}=\lambda\left(1-P_{n}\right)$
$P_{0}=(1-\rho) /\left(1-\rho^{M+1}\right)$
$P_{n}=\left[(1-\rho) /\left(1-\rho^{M+1}\right)\right] \rho^{n}$
$L=\rho /(1-\rho)-(M+1) \rho^{M+1} /\left(1-\rho^{M+1}\right)$
$L_{q}=L-\left(1-P_{0}\right)$

Poisson Input-Arbitrary Service Time
Variance $\sigma^{2}$ is known. For constant service time, $\sigma^{2}=0$.

$$
\begin{aligned}
& P_{0}=1-\rho \\
& L_{q}=\left(\lambda^{2} \sigma^{2}+\rho^{2}\right) /[2(1-\rho)] \\
& L=\rho+L_{q} \\
& W_{q}=L_{q} / \lambda \\
& W=W_{q}+1 / \mu
\end{aligned}
$$

Poisson Input—Erlang Service Times, $\sigma^{2}=1 /\left(k \mu^{2}\right)$

$$
\begin{aligned}
L_{q} & =[(1+k) /(2 k)]\left[\left(\lambda^{2}\right) /(\mu(\mu-\lambda))\right] \\
& =\left[\lambda^{2} /\left(k \mu^{2}\right)+\rho^{2}\right] /[2(1-\rho)] \\
W_{q} & =[(1+k) /(2 k)]\{\lambda /[\mu(\mu-\lambda)]\} \\
W & =W_{q}+1 / \mu
\end{aligned}
$$

## Multiple Server Model ( $s>1$ )

Poisson Input-Exponential Service Times

$$
\begin{aligned}
& P_{0}=\left[\sum_{n=0}^{s-1} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!}+\frac{\left(\frac{\lambda}{\mu}\right)^{s}}{s!}\left(\frac{1}{1-\frac{\lambda}{s \mu}}\right)\right]^{-1} \\
&=1 /\left[\sum_{n=0}^{s-1} \frac{(s \rho)^{n}}{n!}+\frac{(s \rho)^{s}}{s!(1-\rho)}\right] \\
& L_{q}=\frac{P_{0}\left(\frac{\lambda}{\mu}\right)^{s} \rho}{s!(1-\rho)^{2}} \\
&=\frac{P_{0} s^{s} \rho^{s+1}}{s!(1-\rho)^{2}} \\
& P_{n}=P_{0}(\lambda / \mu)^{n} / n! 0 \leq n \leq s \\
& P_{n}=P_{0}(\lambda / \mu)^{n} /\left(s!s^{n-s}\right) \quad n \geq s \\
& W_{q}=L_{q} / \lambda \\
& W=W_{q}+1 / \mu \\
& L=L_{q}+\lambda / \mu
\end{aligned}
$$

Calculations for $P_{0}$ and $L_{q}$ can be time consuming; however, the following table gives formulas for 1,2 , and 3 servers.

| $\boldsymbol{s}$ | $\boldsymbol{P}_{\mathbf{0}}$ | $\boldsymbol{L}_{\boldsymbol{q}}$ |
| :---: | :---: | :---: |
| 1 | $1-\rho$ | $\rho^{2} /(1-\rho)$ |
| 2 | $(1-\rho) /(1+\rho)$ | $2 \rho^{3} /\left(1-\rho^{2}\right)$ |
| 3 | $\frac{2(1-\rho)}{2+4 \rho+3 \rho^{2}}$ | $\frac{9 \rho^{4}}{2+2 \rho-\rho^{2}-3 \rho^{3}}$ |

## SIMULATION

## 1. Random Variate Generation

The linear congruential method of generating pseudorandom numbers $U_{i}$ between 0 and 1 is obtained using $Z_{n}=\left(a Z_{n}+C\right)(\bmod m)$ where $a, C, m$, and $Z_{o}$ are given nonnegative integers and where $U_{i}=Z_{i} / m$. Two integers are equal $(\bmod m)$ if their remainders are the same when divided by $m$.

## 2. Inverse Transform Method

If $X$ is a continuous random variable with cumulative distribution function $F(x)$, and $U_{i}$ is a random number between 0 and 1 , then the value of $X_{i}$ corresponding to $U_{i}$ can be calculated by solving $U_{i}=F\left(x_{i}\right)$ for $x_{i}$. The solution obtained is $x_{i}=F^{-1}\left(U_{i}\right)$, where $F^{-1}$ is the inverse function of $F(x)$.


## Inverse Transform Method for Continuous Random Variables

## FORECASTING

## Moving Average

$$
\hat{d}_{t}=\frac{\sum_{i=1}^{n} d_{t-i}}{n}, \text { where }
$$

$\hat{d}_{t}=$ forecasted demand for period $t$,
$d_{t-i}=$ actual demand for $i$ th period preceding $t$, and
$n=$ number of time periods to include in the moving average.

## Exponentially Weighted Moving Average

$\hat{d}_{t}=\alpha d_{t-1}+(1-\alpha) \hat{d}_{t-1}$, where
$\hat{d}_{t}=$ forecasted demand for $t$, and
$\alpha=$ smoothing constant, $0 \leq \alpha \leq 1$

## LINEAR REGRESSION

## Least Squares

$$
\begin{aligned}
& y=\hat{a}+\hat{b} x, \text { where } \\
& y \text { - intercept }: \hat{a}=\bar{y}-\hat{b} \bar{x}, \\
& \text { and slope }: \hat{b}=S S_{x y} / S S_{x x} \\
& S_{x y}=\sum_{\mathrm{i}=1}^{n} x_{i} y_{i}-(1 / \mathrm{n})\left(\sum_{\mathrm{i}=1}^{n} x_{i}\right)\left(\sum_{\mathrm{i}=1}^{n} y_{i}\right), \\
& S_{x x}=\sum_{\mathrm{i}=1}^{n} x_{i}^{2}-(1 / \mathrm{n})\left(\sum_{\mathrm{i}=1}^{n} x_{i}\right)^{2} \\
& n=\operatorname{sample} \operatorname{size}, \\
& \bar{y}=(1 / \mathrm{n})\left(\sum_{i=1}^{n} y_{i}\right), \text { and } \\
& \bar{x}=(1 / \mathrm{n})\left(\sum_{i=1}^{n} x_{i}\right)
\end{aligned}
$$

## Standard Error of Estimate

$$
\begin{aligned}
& S_{e}^{2}=\frac{S_{x x} S_{y y}-S_{x y}^{2}}{S_{x x}(n-2)}=M S E, \text { where } \\
& S_{y y}=\sum_{i=1}^{n} y_{i}^{2}-(1 / n)\left(\sum_{i=1}^{n} y_{i}\right)^{2}
\end{aligned}
$$

## Confidence Interval for $a$

$$
\hat{a} \pm t_{\alpha / 2, n-2} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right) M S E}
$$

Confidence Interval for $b$

$$
\hat{b} \pm t_{\alpha / 2, n-2} \sqrt{\frac{M S E}{S_{x x}}}
$$

## $\underline{\text { Sample Correlation Coefficient }}$

$$
r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

## $2^{\mathbf{n}}$ FACTORIAL EXPERIMENTS

Factors: $\quad X_{1}, X_{2}, \ldots, X_{n}$
Levels of each factor: 1, 2 (sometimes these levels are represented by the symbols - and + , respectively)
$r=$ number of observations for each experimental condition (treatment),
$E_{i}=$ estimate of the effect of factor $X_{i}, i=1,2, \ldots, n$,
$E_{i j}=$ estimate of the effect of the interaction between factors $X_{i}$ and $X_{j}$,
$\bar{Y}_{i k}=$ average response value for all $\mathrm{r} 2^{\mathrm{n}-1}$ observations having $X_{i}$ set at level $k, k=1,2$, and
$\bar{Y}_{i j}^{k m}=$ average response value for all $\mathrm{r} 2^{\mathrm{n}-2}$ observations having $X_{i}$ set at level $k, k=1,2$, and $X_{j}$ set at level $m, m=1,2$.

$$
\begin{aligned}
& E_{i}=\bar{Y}_{i 2}-\bar{Y}_{i 1} \\
& E_{i j}=\frac{\left(\bar{Y}_{i j}^{22}-\bar{Y}_{i j}^{21}\right)-\left(\bar{Y}_{i j}^{12}-\bar{Y}_{i j}^{11}\right)}{2}
\end{aligned}
$$

## ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

Given independent random samples of size $n_{i}$ from $k$ populations, then:

$$
\begin{aligned}
& \begin{array}{l}
\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2} \\
\quad=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2}+\sum_{i=1}^{k} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} \quad \text { or }
\end{array} \\
& S S_{\text {Total }}=S S_{\text {Error }}+S S_{\text {Treatments }}
\end{aligned}
$$

Let $T$ be the grand total of all $N=\Sigma_{i} n_{i}$ observations and $T_{i}$ be the total of the $n_{i}$ observations of the $i$ th sample. See the One-Way ANOVA table on page 196.

$$
\begin{aligned}
& C=T^{2} / N \\
& S S_{\text {Total }}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}^{2}-C \\
& S S_{\text {Treatments }}=\sum_{i=1}^{k}\left(T_{i}^{2} / n_{i}\right)-C \\
& S S_{\text {Error }}=S S_{\text {Total }}-S S_{\text {Treatments }}
\end{aligned}
$$

## RANDOMIZED BLOCK DESIGN

The experimental material is divided into $n$ randomized blocks. One observation is taken at random for every treatment within the same block. The total number of observations is $N=n k$. The total value of these observations is equal to $T$. The total value of observations for treatment $i$ is $T_{i}$. The total value of observations in block $j$ is $B_{j}$.

$$
\begin{aligned}
& C=T^{2} / N \\
& S S_{\text {Total }}=\sum_{i=1}^{k} \sum_{j=1}^{n} x_{i j}^{2}-C \\
& S S_{\text {Blocks }}=\sum_{j=1}^{n}\left(B_{j}^{2} / k\right)-C \\
& S S_{\text {Treatments }}=\sum_{i=1}^{k}\left(T_{i}^{2} / n\right)-C \\
& S S_{\text {Error }}=S S_{\text {Total }}-S S_{\text {Blocks }}-S S_{\text {Treatments }}
\end{aligned}
$$

See Two-Way ANOVA table on page 196.

## ANALYSIS OF VARIANCE FOR $2^{\text {n }}$ FACTORIAL DESIGNS

## Main Effects

Let $E$ be the estimate of the effect of a given factor, let $L$ be the orthogonal contrast belonging to this effect. It can be proved that

$$
E=\frac{L}{2^{n-1}}
$$

$$
L=\sum_{c=1}^{m} a_{(c)} \bar{Y}_{(c)}
$$

$$
S S_{L}=\frac{r L^{2}}{2^{n}}, \text { where }
$$

$m=$ number of experimental conditions $\left(m=2^{n}\right.$ for $n$ factors),
$a_{(c)}=-1$ if the factor is set at its low level (level 1) in experimental condition $c$,
$a_{(c)}=+1$ if the factor is set at its high level (level 2) in experimental condition $c$,
$r=$ number of replications for each experimental condition
$\bar{Y}_{(c)}=$ average response value for experimental condition $c$, and
$S S_{L}=$ sum of squares associated with the factor.

## Interaction Effects

Consider any group of two or more factors.
$a_{(c)}=+1$ if there is an even number (or zero) of factors in the group set at the low level (level 1) in experimental condition $c=1,2, \ldots, m$
$a_{(c)}=-1$ if there is an odd number of factors in the group set at the low level (level 1) in experimental condition $c=1,2 \ldots, m$

It can be proved that the interaction effect $E$ for the factors in the group and the corresponding sum of squares $S S_{L}$ can be determined as follows:
$E=\frac{L}{2^{n-1}}$
$L=\sum_{c=1}^{m} a_{(c)} \overline{\mathrm{Y}}_{(\mathrm{c})}$
$S S_{L}=\frac{r L^{2}}{2^{n}}$

## Sum of Squares of Random Error

The sum of the squares due to the random error can be computed as

$$
S S_{\text {error }}=S S_{\text {total }}-\Sigma_{i} S S_{i}-\Sigma_{i} \Sigma_{j} S S_{i j}-\ldots-S S_{12 \ldots n}
$$

where $S S_{i}$ is the sum of squares due to factor $X_{i}, S S_{i j}$ is the sum of squares due to the interaction of factors $X_{i}$ and $X_{j}$, and so on. The total sum of squares is equal to

$$
S S_{\text {total }}=\sum_{c=1}^{m} \sum_{k=1}^{r} Y_{c k}^{2}-\frac{T^{2}}{N}
$$

where $Y_{c k}$ is the $k^{t h}$ observation taken for the $c^{t h}$ experimental condition, $m=2^{n}, T$ is the grand total of all observations, and $N=r 2^{n}$.

## RELIABILITY

If $P_{i}$ is the probability that component $i$ is functioning, a reliability function $R\left(P_{1}, P_{2}, ., P_{n}\right)$ represents the probability that a system consisting of $n$ components will work.

For $n$ independent components connected in series,

$$
R\left(P_{1}, P_{2}, \ldots P_{n}\right)=\prod_{i=1}^{n} P_{i}
$$

For $n$ independent components connected in parallel,

$$
R\left(P_{1}, P_{2}, \ldots P n\right)=1-\prod_{i=1}^{n}\left(1-P_{i}\right)
$$

## LEARNING CURVES

The time to do the repetition $N$ of a task is given by

$$
T_{N}=K N^{s} \text {, where }
$$

$K=$ constant, and
$s=\ln$ (learning rate, as a decimal) $/ \ln 2$.
If $N$ units are to be produced, the average time per unit is given by

$$
T_{\mathrm{avg}}=\frac{K}{N(1+s)}\left[(N+0.5)^{(1+s)}-0.5^{(1+s)}\right]
$$

## INVENTORY MODELS

For instantaneous replenishment (with constant demand rate, known holding and ordering costs, and an infinite stockout cost), the economic order quantity is given by

$$
E O Q=\sqrt{\frac{2 A D}{h}}, \text { where }
$$

$A=$ cost to place one order,
$D=$ number of units used per year, and
$h=$ holding cost per unit per year.
Under the same conditions as above with a finite replenishment rate, the economic manufacturing quantity is given by

$$
E M Q=\sqrt{\frac{2 A D}{h(1-D / R)}}, \text { where }
$$

$R=$ the replenishment rate.

## ERGONOMICS

NIOSH Formula
Recommended Weight Limit (U.S. Customary Units)
$=51(10 / \mathrm{H})(1-0.0075|\mathrm{~V}-30|)(0.82+1.8 / \mathrm{D})(1-0.0032 \mathrm{~A})$
where
$\mathrm{H}=$ horizontal distance of the hand from the midpoint of the line joining the inner ankle bones to a point projected on the floor directly below the load center,
$\mathrm{V}=$ vertical distance of the hands from the floor,
$\mathrm{D}=$ vertical travel distance of the hands between the origin and destination of the lift, and
$\mathrm{A}=$ asymmetric angle, in degrees.
The NIOSH formula as stated here assumes that (1) lifting frequency is no greater than one lift every 5 minutes; (2) the person can get a good grip on the object being lifted.

## Biomechanics of the Human Body

## Basic Equations

$$
H_{x}+F_{x}=0
$$

$$
H_{y}+F_{y}=0
$$

$$
H_{z}+F_{z}=0
$$

$$
T_{H x z}+T_{F x z}=0
$$

$$
T_{H y z}+T_{F y z}=0
$$

$$
T_{H x y}+T_{F x y}=0
$$



The coefficient of friction $\mu$ and the angle $\alpha$ at which the floor is inclined determine the equations at the foot.

$$
F_{x}=\mu F_{z}
$$

With the slope angle $\alpha$

$$
F_{x}=\mu F_{z} \cos \alpha
$$

Of course, when motion must be considered, dynamic conditions come into play according to Newton's Second Law. Force transmitted with the hands is counteracted at the foot. Further, the body must also react with internal forces at all points between the hand and the foot.

PERMISSIBLE NOISE EXPOSURES *

| Duration per day, hours | Sound level, dBA |
| :---: | :---: |
| 8 | 90 |
| 6 | 92 |
| 4 | 95 |
| 3 | 97 |
| 2 | 100 |
| $11 / 2$ | 102 |
| 1 | 105 |
| $1 / 2$ | 110 |
| $1 / 4$ or less | 115 |

[^11]
## FACILITY PLANNING

## Equipment Requirements

$P_{i j}=$ desired production rate for product $i$ on machine $j$, measured in pieces per production period,
$T_{i j}=$ production time for product $i$ on machine $j$, measured in hours per piece,
$C_{i j}=$ number of hours in the production period available for the production of product $i$ on machine $j$,
$M_{j}=$ number of machines of type $j$ required per production period, and
$n=$ number of products.
Therefore, $M_{j}$ can be expressed as

$$
M_{j}=\sum_{i=1}^{n} \frac{P_{i j} T_{i j}}{C_{i j}}
$$

## People Requirements

$$
A_{j}=\sum_{i=1}^{n} \frac{P_{i j} T_{i j}}{C_{i j}}, \text { where }
$$

$A_{j}=$ number of crews required for assembly operation $j$,
$P_{i j}=$ desired production rate for product $i$ and assembly operation $j$ (pieces per day),
$T_{i j}=$ standard time to perform operation $j$ on product $i$ (minutes per piece),
$C_{i j}=$ number of minutes available per day for assembly operation $j$ on product $i$, and
$n=$ number of products.

## Standard Time Determination

$$
S T=N T \times A F
$$

where
$N T=$ normal time, and
$A F=$ allowance factor.
Case 1: Allowances are based on the job time.
$A F_{\mathrm{job}}=1+A_{\mathrm{job}}$
$A_{\mathrm{job}}=$ allowance fraction (percentage) based on job time.
Case 2: Allowances are based on workday.
$A F_{\text {time }}=1 /\left(1-A_{\text {day }}\right)$
$A_{\text {day }}=$ allowance fraction (percentage) based on workday.

## Plant Location

The following is one formulation of a discrete plant location problem.
Minimize

$$
z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} y_{i j}+\sum_{j=1}^{n} f_{j} x_{j}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{m} y_{i j} \leq m x_{j}, \quad j=1, \ldots, n \\
& \sum_{j=1}^{n} y_{i j}=1, \quad i=1, \ldots, m \\
& y_{i j} \geq 0, \text { for all } i, j \\
& x_{j}=(0,1), \text { for all } j, \text { where }
\end{aligned}
$$

$m=$ number of customers,
$n=$ number of possible plant sites,
$y_{i j}=$ fraction or portion of the demand of customer $i$ which is satisfied by a plant located at site $j ; i=1$, $\ldots, m ; j=1, \ldots, n$,
$x_{j}=1$, if a plant is located at site $j$,
$x_{j}=0$, otherwise,
$c_{i j}=$ cost of supplying the entire demand of customer $i$ from a plant located at site $j$, and
$f_{j}=$ fixed cost resulting from locating a plant at site $j$.

## Material Handling

Distances between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{1}\right)$ under different metrics:
Euclidean:

$$
D=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Rectilinear (or Manhattan):

$$
D=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

Chebyshev (simultaneous $x$ and $y$ movement):

$$
D=\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)
$$

## Line Balancing

$$
\begin{aligned}
& N_{\min }=\left(O R \times \sum_{i} t_{i} / O T\right) \\
& \quad=\text { Theoretical minimum number of stations } \\
& \text { Idle Time/Station }=C T-S T \\
& \text { Idle Time/Cycle }=\Sigma(C T-S T)
\end{aligned}
$$

Percent Idle Time $=\frac{\text { Idle Time } / \text { Cycle }}{N_{\text {actual }} \times C T} \times 100$, where
$C T=$ cycle time (time between units),
$O T=$ operating time/period,
$O R=$ output rate/period,
$S T=$ station time (time to complete task at each station),
$t_{i}=$ individual task times, and
$N=$ number of stations.

## Job Sequencing

Two Work Centers-Johnson's Rule

1. Select the job with the shortest time, from the list of jobs, and its time at each work center.
2. If the shortest job time is the time at the first work center, schedule it first, otherwise schedule it last. Break ties arbitrarily.
3. Eliminate that job from consideration.
4. Repeat 1,2 , and 3 until all jobs have been scheduled.

## CRITICAL PATH METHOD (CPM)

$d_{i j}=$ duration of activity $(i, j)$,
$C P=$ critical path (longest path),
$T=$ duration of project, and
$T=\sum_{(i, j) \in C P} d_{i j}$

## PERT

$\left(a_{i j}, b_{i j}, c_{i j}\right)=$ (optimistic, most likely, pessimistic) durations for activity $(i, j)$,
$\mu_{i j}=$ mean duration of activity $(i, j)$,
$\sigma_{i j}=$ standard deviation of the duration of activity $(i, j)$,
$\mu=$ project mean duration, and
$\sigma=$ standard deviation of project duration.
$\mu_{i j}=\frac{a_{i j}+4 b_{i j}+c_{i j}}{6}$
$\sigma_{i j}=\frac{c_{i j}-a_{i j}}{6}$
$\mu=\sum_{(i, j) \in C P} \mu_{i j}$
$\sigma^{2}=\sum_{(i, j) \in C P} \sigma_{i j}^{2}$

TAYLOR TOOL LIFE FORMULA

$$
V T^{n}=C, \text { where }
$$

$V=$ speed in surface feet per minute,
$T=$ time before the tool reaches a certain percentage of possible wear, and
$C, n=$ constants that depend on the material and on the tool.

## WORK SAMPLING FORMULAS

$$
D=Z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}} \quad \text { and } \quad R=Z_{\alpha / 2} \sqrt{\frac{1-p}{p n}} \text {, where }
$$

$p=$ proportion of observed time in an activity,
$D=$ absolute error,
$R=$ relative error $(R=D / p)$, and
$n=$ sample size.

ONE-WAY ANOVA TABLE

| Source of Variation | Degrees of <br> Freedom | Sum of <br> Squares | Mean Square | $\boldsymbol{F}$ |
| :--- | :---: | :--- | :---: | :---: |
| Between Treatments | $k-1$ | $S S_{\text {Treatments }}$ | $M S T=\frac{S S_{\text {Treatments }}}{k-1}$ | $\frac{M S T}{M S E}$ |
| Error | $N-k$ | $S S_{\text {Error }}$ | $M S E=\frac{S S_{\text {Error }}}{N-k}$ |  |
| Total | $N-1$ | $S S_{\text {Total }}$ |  |  |

TWO-WAY ANOVA TABLE

| Source of Variation | Degrees of <br> Freedom | Sum of <br> Squares | Mean Square | $\boldsymbol{F}$ |
| :--- | :---: | :--- | :---: | :---: |
| Between Treatments | $k-1$ | $S S_{\text {Treatments }}$ | $M S T=\frac{S S_{\text {Treatments }}}{k-1}$ | $\frac{M S T}{M S E}$ |
| Between Blocks | $n-1$ | $S S_{\text {Blocks }}$ | $M S B=\frac{S S_{\text {Blocks }}}{n-1}$ | $\frac{M S B}{M S E}$ |
| Error | $(k-1)(n-1)$ | $S S_{\text {Error }}$ | $M S E=\frac{S S_{\text {Error }}}{(k-1)(n-1)}$ |  |
| Total | $N-1$ | $S S_{\text {Total }}$ |  |  |

PROBABILITY AND DENSITY FUNCTIONS: MEANS AND VARIANCES

| Variable | Equation | Mean | Variance |
| :---: | :---: | :---: | :---: |
| Binomial Coefficient | $\binom{n}{x}=\frac{n!}{x!(n-x)!}$ |  |  |
| Binomial | $b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$ | $n p$ | $n p(1-p)$ |
| Hyper <br> Geometric | $h(x ; n, r, N)=\binom{r}{x} \frac{\binom{N-r}{n-x}}{\binom{N}{n}}$ | $\frac{n r}{N}$ | $\frac{r(N-r) n(N-n)}{N^{2}(N-1)}$ |
| Poisson | $f(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ | $\lambda$ | $\lambda$ |
| Geometric | $g(x ; p)=p(1-p)^{x-1}$ | $1 / p$ | $(1-p) / p^{2}$ |
| Negative <br> Binomial | $f(y ; r, p)=\binom{y+r-1}{r-1} p^{r}(1-p)^{y}$ | $r / p$ | $r(1-p) / p^{2}$ |
| Multinomial | $f\left(x_{1}, \ldots x_{k}\right)=\frac{n!}{x_{1}!, \ldots, x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}$ | $n p_{i}$ | $n p_{i}\left(1-p_{i}\right)$ |
| Uniform | $f(x)=1 /(b-a)$ | $(a+b) / 2$ | $(b-a)^{2} / 12$ |
| Gamma | $f(x)=\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)} ; \quad \alpha>0, \beta>0$ | $\alpha \beta$ | $\alpha \beta^{2}$ |
| Exponential | $f(x)=\frac{1}{\beta} e^{-x / \beta}$ | $\beta$ | $\beta^{2}$ |
| Weibull | $f(x)=\frac{\alpha}{\beta} x^{\alpha-1} e^{-x^{\alpha} / \beta}$ | $\beta^{1 / \alpha} \Gamma[(\alpha+1) / \alpha]$ | $\beta^{2 / \alpha}\left[\Gamma\left(\frac{\alpha+1}{\alpha}\right)-\Gamma^{2}\left(\frac{\alpha+1}{\alpha}\right)\right]$ |
| Normal | $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ | $\mu$ | $\sigma^{2}$ |
| Triangular | $f(x)=\left\{\begin{array}{l} \frac{2(x-a)}{(b-a)(m-a)} \text { if } a \leq x \leq m \\ \frac{2(b-x)}{(b-a)(b-m)} \text { if } m<x \leq b \end{array}\right.$ | $\frac{a+b+m}{3}$ | $\frac{a^{2}+b^{2}+m^{2}-a b-a m-b m}{18}$ |

## HYPOTHESIS TESTING

Table A. Tests on means of normal distribution-variance known.

| Hypothesis | Test Statistic | Criteria for Rejection |
| :--- | :---: | :---: |
| $\boldsymbol{H}_{\mathbf{0}}: \mu=\mu_{0}$ |  | $\left\|\boldsymbol{Z}_{0}\right\|>\boldsymbol{Z}_{\alpha / 2}$ |
| $\boldsymbol{H}_{\mathbf{1}}: \mu \neq \mu_{0}$ | $\boldsymbol{Z}_{\mathbf{0}} \equiv \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$ |  |
| $\boldsymbol{H}_{\mathbf{0}}: \mu=\mu_{0}$ |  | $\boldsymbol{Z}_{\mathbf{0}}<-\boldsymbol{Z}_{\alpha}$ |
| $\boldsymbol{H}_{\mathbf{0}}: \mu<\mu_{0}$ |  |  |
| $\boldsymbol{H}_{\mathbf{0}}: \mu=\mu_{0}$ | $\boldsymbol{Z}_{\mathbf{0}}>\boldsymbol{Z}_{\alpha}$ |  |
| $\boldsymbol{H}_{\mathbf{1}}: \mu>\mu_{0}$ | $\boldsymbol{Z}_{\mathbf{0}} \equiv \frac{\overline{X_{1}}-\overline{X_{2}}-\gamma}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$ | $\left\|\boldsymbol{Z}_{\mathbf{0}}\right\|>\boldsymbol{Z}_{\alpha / 2}$ |
| $\boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma$ |  | $\boldsymbol{Z}_{\mathbf{0}}<-\boldsymbol{Z}_{\alpha}$ |
| $\boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2} \neq \gamma$ |  |  |
| $\boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma$ |  | $\boldsymbol{Z}_{\mathbf{0}}>\boldsymbol{Z}_{\alpha}$ |
| $\boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2}<\gamma$ |  |  |
| $\boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma$ |  |  |
| $\boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2}>\gamma$ |  |  |

Table B. Tests on means of normal distribution-variance unknown.

| Hypothesis | Test Statistic | Criteria for Rejection |
| :---: | :---: | :---: |
| $\boldsymbol{H}_{0}: \mu=\mu_{0}$ |  |  |
| $\boldsymbol{H}_{1}: \mu \neq \mu_{0}$ |  | $\left\|\boldsymbol{t}_{\mathbf{0}}\right\|>\boldsymbol{t}_{\alpha / 2, n-1}$ |
| $\boldsymbol{H}_{0}: \mu=\mu_{0}$ | $t_{0}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{1}}$ |  |
| $\boldsymbol{H}_{1}: \mu<\mu_{0}$ | $t_{0}=\frac{x}{S / \sqrt{n}}$ | $\boldsymbol{t}_{\mathbf{0}}<-\boldsymbol{t}_{\alpha, n-1}$ |
| $\boldsymbol{H}_{0}: \mu=\mu_{0}$ |  |  |
| $\boldsymbol{H}_{1}: \mu>\mu_{0}$ |  | $\boldsymbol{t}_{\mathbf{0}}>\boldsymbol{t}_{\alpha, n-1}$ |
| $\begin{aligned} & \boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma \\ & \boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2} \neq \gamma \end{aligned}$ | $\boldsymbol{t}_{\mathbf{0}}=\frac{\overline{X_{1}}-\overline{X_{2}}-\gamma}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ | $\left\|\boldsymbol{t}_{\mathbf{0}}\right\|>\boldsymbol{t}_{\alpha / 2, v}$ |
| $\begin{aligned} & \boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma \\ & \boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2}<\gamma \end{aligned}$ | $\boldsymbol{t}_{0}=\frac{\overline{X_{1}}-\overline{X_{2}}-\gamma}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}$ | $\boldsymbol{t}_{0}<-\boldsymbol{t}_{\alpha, v}$ |
| $\begin{aligned} & \boldsymbol{H}_{\mathbf{0}}: \mu_{1}-\mu_{2}=\gamma \\ & \boldsymbol{H}_{\mathbf{1}}: \mu_{1}-\mu_{2}>\gamma \end{aligned}$ | $v=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(S_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}$ | $\boldsymbol{t}_{\mathbf{0}}>\boldsymbol{t}_{\alpha, v}$ |

In Table B, $S_{p}{ }^{2}=\left[\left(n_{1}-1\right) S_{1}{ }^{2}+\left(n_{2}-1\right) S_{2}{ }^{2}\right] / v$

Table C. Tests on variances of normal distribution with unknown mean.

| Hypothesis | Test Statistic | Criteria for Rejection |
| :---: | :---: | :---: |
| $\boldsymbol{H}_{0}: \sigma^{2}=\sigma_{0}{ }^{2}$ | $\chi_{0}^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}$ | $\chi_{0}^{2}>\chi^{2} \alpha^{2}, n-1$ or |
| $\boldsymbol{H}_{1}: \sigma^{2} \neq \sigma_{0}{ }^{2}$ |  | $\chi_{0}^{2}<\chi_{1-\alpha / 2, n-1}^{2}$ |
| $\boldsymbol{H}_{\mathbf{0}}: \sigma^{2}=\sigma_{0}{ }^{2}$ |  |  |
| $\boldsymbol{H}_{1}: \sigma^{2}<\sigma_{0}{ }^{2}$ |  | $\chi_{0}^{2}<\chi^{2}{ }_{1-\alpha / 2, n-1}$ |
| $\begin{aligned} & \boldsymbol{H}_{0}: \sigma^{2}=\sigma_{0}^{2} \\ & \boldsymbol{H}_{1}: \sigma^{2}>\sigma_{0}{ }^{2} \end{aligned}$ |  | $\chi_{0}^{2}>\chi^{2}{ }_{\alpha, n-1}$ |
|  |  |  |
| $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\sigma}_{1}{ }^{2}=\boldsymbol{\sigma}_{2}{ }^{2}$ |  |  |
| $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\sigma}_{1}{ }^{2} \neq \boldsymbol{\sigma}_{2}{ }^{2}$ | $\boldsymbol{F}_{\mathbf{0}}=\frac{S^{2}}{S_{2}^{2}}$ | $\boldsymbol{F}_{\mathbf{0}}<\boldsymbol{F}_{1-\alpha / 2, n_{1}-1, n_{2}-1}$ |
| $\begin{aligned} & \boldsymbol{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2} \\ & \boldsymbol{H}_{1}: \sigma_{1}{ }^{2}<\sigma_{2}{ }^{2} \end{aligned}$ |  |  |
| $\boldsymbol{H}_{1}: \sigma_{1}{ }^{2}<\sigma_{2}{ }^{2}$ | $\boldsymbol{F}_{\mathbf{0}}=\frac{S_{2}}{S_{1}^{2}}$ | $\boldsymbol{F}_{\mathbf{0}}>\boldsymbol{F}_{\alpha, n_{2}-1, n_{1}-1}$ |
| $\boldsymbol{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ | $\boldsymbol{F}_{0}=\frac{S_{1}^{2}}{}$ |  |
| $\boldsymbol{H}_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$ | $\boldsymbol{F}_{\mathbf{0}}=\frac{1}{S_{2}^{2}}$ | $\boldsymbol{F}_{\mathbf{0}}>\boldsymbol{F}_{\alpha, n_{1}-1, n_{2}-1}$ |

## ANTHROPOMETRIC MEASUREMENTS



## ERGONOMICS

| U.S. Civilian Body Dimensions, Female/Male, for Ages 20 to 60 Years (Centimeters) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (See Anthropometric Measurements Figure) | Percentiles |  |  |  |
|  | 5th | 50th | 95th | Std. Dev. |
| HEIGHTS |  |  |  |  |
| Stature (height) | 149.5 / 161.8 | 160.5 / 173.6 | 171.3 / 184.4 | 6.6 / 6.9 |
| Eye height | 138.3 / 151.1 | 148.9 / 162.4 | 159.3 / 172.7 | 6.4 / 6.6 |
| Shoulder (acromion) height | 121.1/132.3 | 131.1/142.8 | 141.9 / 152.4 | $6.1 / 6.1$ |
| Elbow height | 93.6 / 100.0 | 101.2 / 109.9 | 108.8 / 119.0 | 4.6 / 5.8 |
| Knuckle height | 64.3 / 69.8 | 70.2 / 75.4 | 75.9 / 80.4 | 3.5 / 3.2 |
| Height, sitting | 78.6 / 84.2 | 85.0 / 90.6 | $90.7 / 96.7$ | 3.5 / 3.7 |
| Eye height, sitting | 67.5 / 72.6 | 73.3 / 78.6 | 78.5 / 84.4 | $3.3 / 3.6$ |
| Shoulder height, sitting | 49.2 / 52.7 | 55.7 / 59.4 | 61.7 / 65.8 | 3.8 / 4.0 |
| Elbow rest height, sitting | 18.1 / 19.0 | 23.3 / 24.3 | 28.1 / 29.4 | $2.9 / 3.0$ |
| Knee height, sitting | 45.2 / 49.3 | 49.8 / 54.3 | 54.5 / 59.3 | $2.7 / 2.9$ |
| Popliteal height, sitting | 35.5 / 39.2 | 39.8 / 44.2 | 44.3 / 48.8 | $2.6 / 2.8$ |
| Thigh clearance height | 10.6 / 11.4 | 13.7 / 14.4 | 17.5 / 17.7 | $1.8 / 1.7$ |
| DEPTHS |  |  |  |  |
| Chest depth | 21.4 / 21.4 | 24.2 / 24.2 | 29.7 / 27.6 | 2.5 / 1.9 |
| Elbow-fingertip distance | 38.5 / 44.1 | 42.1 / 47.9 | 46.0 / 51.4 | $2.2 / 2.2$ |
| Buttock-knee length, sitting | $51.8 / 54.0$ | 56.9 / 59.4 | 62.5 / 64.2 | $3.1 / 3.0$ |
| Buttock-popliteal length, sitting | 43.0 / 44.2 | 48.1 / 49.5 | 53.5 / 54.8 | $3.1 / 3.0$ |
| Forward reach, functional | 64.0 / 76.3 | 71.0 / 82.5 | 79.0 / 88.3 | 4.5 / 5.0 |
| BREADTHS |  |  |  |  |
| Elbow-to-elbow breadth | 31.5 / 35.0 | 38.4 / 41.7 | 49.1 / 50.6 | 5.4 / 4.6 |
| Hip breadth, sitting | 31.2 / 30.8 | 36.4 / 35.4 | 43.7 / 40.6 | 3.7 / 2.8 |
| HEAD DIMENSIONS |  |  |  |  |
| Head breadth | 13.6 / 14.4 | 14.54 / 15.42 | 15.5 / 16.4 | 0.57 / 0.59 |
| Head circumference | 52.3 / 53.8 | 54.9 / 56.8 | $57.7 / 59.3$ | 1.63 / 1.68 |
| Interpupillary distance | $5.1 / 5.5$ | $5.83 / 6.20$ | 6.5 / 6.8 | 0.4 / 0.39 |
| HAND DIMENSIONS |  |  |  |  |
| Hand length | 16.4 / 17.6 | 17.95 / 19.05 | 19.8 / 20.6 | 1.04 / 0.93 |
| Breadth, metacarpal | 7.0 / 8.2 | 7.66 / 8.88 | 8.4 / 9.8 | $0.41 / 0.47$ |
| Circumference, metacarpal | 16.9 / 19.9 | 18.36 / 21.55 | 19.9 / 23.5 | 0.89 / 1.09 |
| Thickness, metacarpal III | $2.5 / 2.4$ | 2.77 / 2.76 | $3.1 / 3.1$ | 0.18 / 0.21 |
| Digit $1 \times \sim$ |  |  |  |  |
| Breadth, interphalangeal | 1.7 / 2.1 | 1.98 / 2.29 | $2.1 / 2.5$ | 0.12 / 0.13 |
| Crotch-tip length | 4.7 / 5.1 | $5.36 / 5.88$ | $6.1 / 6.6$ | 0.44 / 0.45 |
| Digit 2 |  |  |  |  |
| Breadth, distal joint | 1.4 / 1.7 | 1.55 / 1.85 | 1.7 / 2.0 | $0.10 / 0.12$ |
| Crotch-tip length | $6.1 / 6.8$ | $6.88 / 7.52$ | 7.8 / 8.2 | $0.52 / 0.46$ |
| Digit 3 l |  |  |  |  |
| Breadth, distal joint | 1.4 / 1.7 | $1.53 / 1.85$ | $1.7 / 2.0$ | $0.09 / 0.12$ |
| Crotch-tip length | $7.0 / 7.8$ | 7.77 / 8.53 | 8.7 / 9.5 | $0.51 / 0.51$ |
|  |  |  |  |  |
| Breadth, distal joint | 1.3 / 1.6 | 1.42 / 1.70 | 1.6 / 1.9 | 0.09 / 0.11 |
| Crotch-tip length | $6.5 / 7.4$ | 7.29 / 7.99 | 8.2 / 8.9 | $0.53 / 0.47$ |
| Digit 5 |  |  |  |  |
| Breadth, distal joint | 1.2 / 1.4 | 1.32 / 1.57 | 1.5 / 1.8 | 0.09/0.12 |
| Crotch-tip length | 4.8 / 5.4 | 5.44 / 6.08 | 6.2 / 6.99 | 0.44/0.47 |
| FOOT DIMENSIONS |  |  |  |  |
| Foot length | 22.3 / 24.8 | 24.1 / 26.9 | 26.2 / 29.0 | 1.19 / 1.28 |
| Foot breadth | $8.1 / 9.0$ | 8.84 / 9.79 | 9.7 / 10.7 | $0.50 / 0.53$ |
| Lateral malleolus height | $5.8 / 6.2$ | 6.78 / 7.03 | $7.8 / 8.0$ | 0.59 / 0.54 |
| Weight (kg) | 46.2 / 56.2 | $61.1 / 74.0$ | 89.9 / 97.1 | 13.8 / 12.6 |

## ERGONOMICS-HEARING

The average shifts with age of the threshold of hearing for pure tones of persons with "normal" hearing, using a 25 -year-old group as a reference group.


Equivalent sound-level contours used in determining the A-weighted sound level on the basis of an octave-band analysis. The curve at the point of the highest penetration of the noise spectrum reflects the A-weighted sound level.


Estimated average trend curves for net hearing loss at $1,000,2,000$, and $4,000 \mathrm{~Hz}$ after continuous exposure to steady noise. Data are corrected for age, but not for temporary threshold shift. Dotted portions of curves represent extrapolation from available data.


(c)

Exposure time, years

Exposure time, years

Tentative upper limit of effective temperature (ET) for unimpaired mental performance as related to exposure time; data are based on an analysis of 15 studies. Comparative curves of tolerable and marginal physiological limits are also given.

ATMOSPHERE CONDITIONS


## MECHANICAL ENGINEERING

## MECHANICAL DESIGN AND ANALYSIS

## Stress Analysis

See MECHANICS OF MATERIALS section.

## Failure Theories

See MECHANICS OF MATERIALS section and the MATERIALS SCIENCE section.

## Deformation and Stiffness

See MECHANICS OF MATERIALS section.

## Components

Square Thread Power Screws: The torque required to raise, $T_{R}$, or to lower, $T_{L}$, a load is given by

$$
\begin{aligned}
& T_{R}=\frac{F d_{m}}{2}\left(\frac{l+\pi \mu d_{m}}{\pi d_{m}-\mu l}\right)+\frac{F \mu_{c} d_{c}}{2}, \\
& T_{L}=\frac{F d_{m}}{2}\left(\frac{\pi \mu d_{m}-l}{\pi d_{m}+\mu l}\right)+\frac{F \mu_{c} d_{c}}{2}, \text { where }
\end{aligned}
$$

$d_{c}=$ mean collar diameter,
$d_{m}=$ mean thread diameter,
$l=$ lead,
$F=$ load,
$\mu=$ coefficient of friction for thread, and
$\mu_{c}=$ coefficient of friction for collar.
The efficiency of a power screw may be expressed as

$$
\eta=F l /(2 \pi T)
$$

## Mechanical Springs

Helical Linear Springs: The shear stress in a helical linear spring is

$$
\tau=K_{s} \frac{8 F D}{\pi d^{3}} \text {, where }
$$

$d=$ wire diameter,
$F=$ applied force,
$D=$ mean spring diameter
$K_{s}=(2 C+1) /(2 C)$, and
$C=D / d$.
The deflection and force are related by $F=k x$ where the spring rate (spring constant) $k$ is given by

$$
k=\frac{d^{4} G}{8 D^{3} N}
$$

where $G$ is the shear modulus of elasticity and $N$ is the number of active coils. See Table of Material Properties at the end of the MECHANICS OF MATERIALS section for values of $G$.

Spring Material: The minimum tensile strength of common spring steels may be determined from

$$
S_{u t}=A / d^{m}
$$

where $S_{u t}$ is the tensile strength in $\mathrm{MPa}, d$ is the wire diameter in millimeters, and $A$ and $m$ are listed in the following table.

| Material | ASTM | $\boldsymbol{m}$ | $\boldsymbol{A}$ |
| :--- | :---: | :---: | :---: |
| Music wire | A228 | 0.163 | 2060 |
| Oil-tempered wire | A229 | 0.193 | 1610 |
| Hard-drawn wire | A227 | 0.201 | 1510 |
| Chrome vanadium | A232 | 0.155 | 1790 |
| Chrome silicon | A401 | 0.091 | 1960 |

Maximum allowable torsional stress for static applications may be approximated as

$$
\begin{gathered}
S_{s y}=\tau=0.45 S_{u t} \text { cold-drawn carbon steel (A227, } \\
\text { A228, A229) } \\
S_{s y}=\tau=0.50 S_{u t} \text { hardened and tempered carbon and } \\
\text { low-alloy steels (A232, A401) }
\end{gathered}
$$

## Compression Spring Dimensions

| Type of Spring Ends |  |  |
| :--- | :--- | :--- |
| Term | Plain | Plain and <br> Ground |
| End coils, $N_{e}$ | 0 | 1 |
| Total coils, $N_{t}$ | $N$ | $N+1$ |
| Free length, $L_{0}$ | $p N+d$ | $p(N+1)$ |
| Solid length, $L_{s}$ | $d\left(N_{t}+1\right)$ | $d N_{t}$ |
| Pitch, $p$ | $\left(L_{0}-d\right) / N$ | $L_{0}(N+1)$ |


| Term | Squared or <br> Closed | Squared and <br> Ground |
| :--- | :--- | :--- |
| End coils, $N_{e}$ | 2 | 2 |
| Total coils, $N_{t}$ | $N+2$ | $N+2$ |
| Free length, $L_{0}$ | $p N+3 d$ | $p N+2 d$ |
| Solid length, $L_{s}$ | $d\left(N_{t}+1\right)$ | $d N_{t}$ |
| Pitch, $p$ | $\left(L_{0}-3 d\right) / N$ | $\left(L_{0}-2 d\right) / N$ |

Helical Torsion Springs: The bending stress is given as

$$
\sigma=K_{i}\left[32 F r /\left(\pi d^{3}\right)\right]
$$

where $F$ is the applied load and $r$ is the radius from the center of the coil to the load.
$K_{i}=$ correction factor
$=\left(4 C^{2}-C-1\right) /[4 C(C-1)]$
$C=D / d$

The deflection $\theta$ and moment $F r$ are related by

$$
F r=k \theta
$$

where the spring rate $k$ is given by

$$
k=\frac{d^{4} E}{64 D N}
$$

where $k$ has units of $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$ and $\theta$ is in radians.
Spring Material: The strength of the spring wire may be found as shown in the section on linear springs. The allowable stress $\sigma$ is then given by

$$
\begin{aligned}
S_{y}=\sigma= & 0.78 S_{u t} \text { cold-drawn carbon steel (A227, } \\
& \mathrm{A} 228, \mathrm{~A} 229) \\
S_{y}=\sigma= & 0.87 S_{u t} \text { hardened and tempered carbon } \\
& \text { and low-alloy steel (A232, A401) }
\end{aligned}
$$

## Ball/Roller Bearing Selection

The minimum required basic load rating (load for which $90 \%$ of the bearings from a given population will survive 1 million revolutions) is given by

$$
C=P L^{\frac{1}{a}}, \text { where }
$$

$C=$ minimum required basic load rating,
$P=$ design radial load,
$L=$ design life (in millions of revolutions), and
$a=3$ for ball bearings, $10 / 3$ for roller bearings.
When a ball bearing is subjected to both radial and axial loads, an equivalent radial load must be used in the equation above. The equivalent radial load is

$$
P_{e q}=X V F_{r}+Y F_{a}, \text { where }
$$

$P_{e q}=$ equivalent radial load,
$F_{r}=$ applied constant radial load, and
$F_{a}=$ applied constant axial (thrust) load.
For radial contact, deep-groove ball bearings:
$V=1$ if inner ring rotating, 1.2 if outer ring rotating,
If $F_{a} /\left(V F_{r}\right)>e$,
$X=0.56, \quad$ and $\quad Y=0.840\left(\frac{F_{a}}{C_{o}}\right)^{-0.247}$
where $e=0.513\left(\frac{F_{a}}{C_{o}}\right)^{0.236}, \quad$ and
$C_{o}=$ basic static load rating, from bearing catalog.
If $F_{a} /\left(V F_{r}\right) \leq e, \mathrm{X}=1$ and $\mathrm{Y}=0$.

## Intermediate- and Long-Length Columns

The slenderness ratio of a column is $S_{r}=l / k$, where $l$ is the length of the column and $k$ is the radius of gyration. The radius of gyration of a column cross-section is, $k=\sqrt{I / A}$
where $I$ is the area moment of inertia and $A$ is the crosssectional area of the column. A column is considered to be intermediate if its slenderness ratio is less than or equal to $\left(S_{r}\right)_{D}$, where

$$
\left(S_{r}\right)_{D}=\pi \sqrt{\frac{2 E}{S_{y}}}, \quad \text { and }
$$

$E=$ Young's modulus of respective member, and
$S_{y}=$ yield strength of the column material.
For intermediate columns, the critical load is

$$
P_{c r}=A\left[S_{y}-\frac{1}{E}\left(\frac{S_{y} S_{r}}{2 \pi}\right)^{2}\right], \text { where }
$$

$P_{c r}=$ critical buckling load,
$A=$ cross-sectional area of the column,
$S_{y}=$ yield strength of the column material,
$E=$ Young's modulus of respective member, and
$S_{r}=$ slenderness ratio.
For long columns, the critical load is

$$
P_{c r}=\frac{\pi^{2} E A}{S_{r}^{2}}
$$

where the variables are as defined above.
For both intermediate and long columns, the effective column length depends on the end conditions. The AISC recommended values for the effective lengths of columns are, for: rounded-rounded or pinned-pinned ends, $l_{\text {eff }}=l$; fixed-free, $l_{\text {eff }}=2.1 l$; fixed-pinned, $l_{e f f}=0.80 l$; fixed-fixed, $l_{e f f}=0.65 l$. The effective column length should be used when calculating the slenderness ratio.

## Power Transmission

## Shafts and Axles

Static Loading: The maximum shear stress and the von Mises stress may be calculated in terms of the loads from
$\tau_{\max }=\frac{2}{\pi d^{3}}\left[(8 M+F d)^{2}+(8 T)^{2}\right]^{1 / 2}$,
$\sigma^{\prime}=\frac{4}{\pi d^{3}}\left[(8 M+F d)^{2}+48 T^{2}\right]^{1 / 2}$, where
$M=$ the bending moment,
$F=$ the axial load,
$T=$ the torque, and
$d=$ the diameter.

Fatigue Loading: Using the maximum-shear-stress theory combined with the Soderberg line for fatigue, the diameter and safety factor are related by

$$
\frac{\pi d^{3}}{32}=n\left[\left(\frac{M_{m}}{S_{y}}+\frac{K_{f} M_{a}}{S_{e}}\right)^{2}+\left(\frac{T_{m}}{S_{y}}+\frac{K_{f s} T_{a}}{S_{e}}\right)^{2}\right]^{1 / 2}
$$

where
d $=$ diameter,
$n=$ safety factor,
$M_{a}=$ alternating moment,
$M_{m}=$ mean moment,
$T_{a}=$ alternating torque,
$T_{m}=$ mean torque,
$S_{e}=$ fatigue limit,
$S_{y}=$ yield strength,
$K_{f}=$ fatigue strength reduction factor, and
$K_{f s}=$ fatigue strength reduction factor for shear.

## Joining

Threaded Fasteners: The load carried by a bolt in a threaded connection is given by

$$
F_{b}=C P+F_{i} \quad F_{m}<0
$$

while the load carried by the members is

$$
F_{m}=(1-C) P-F_{i} \quad F_{m}<0, \text { where }
$$

$C=$ joint coefficient,
$=k_{b} /\left(k_{b}+k_{m}\right)$
$F_{b}=$ total bolt load,
$F_{i}=$ bolt preload,
$F_{m}=$ total material load,
$P=$ externally applied load,
$k_{b}=$ the effective stiffness of the bolt or fastener in the grip, and
$k_{m}=$ the effective stiffness of the members in the grip.
Bolt stiffness may be calculated from
$k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}$, where
$A_{d}=$ major-diameter area,
$A_{t}=$ tensile-stress area,
$E=$ modulus of elasticity,
$l_{d}=$ length of unthreaded shank, and
$l_{t}=$ length of threaded shank contained within the grip.
If all members within the grip are of the same material, member stiffness may be obtained from

$$
k_{m}=d E A e^{b(\mathrm{~d} / l)}, \text { where }
$$

$d=$ bolt diameter,
$E=$ modulus of elasticity of members, and
$l=$ grip length.

Coefficients $A$ and $b$ are given in the table below for various joint member materials.

| Material | $\boldsymbol{A}$ | $\boldsymbol{b}$ |
| :--- | :---: | :---: |
| Steel | 0.78715 | 0.62873 |
| Aluminum | 0.79670 | 0.63816 |
| Copper | 0.79568 | 0.63553 |
| Gray cast iron | 0.77871 | 0.61616 |

The approximate tightening torque required for a given preload $F_{i}$ and for a steel bolt in a steel member is given by $T=0.2 F_{i} d$.
Threaded Fasteners - Design Factors: The bolt load factor is

$$
n_{b}=\left(S_{p} A_{t}-F_{i}\right) / C P
$$

The factor of safety guarding against joint separation is

$$
n_{s}=F_{i} /[P(1-C)]
$$

Threaded Fasteners - Fatigue Loading: If the externally applied load varies between zero and $P$, the alternating stress is

$$
\sigma_{a}=C P /\left(2 A_{t}\right)
$$

and the mean stress is

$$
\sigma_{m}=\sigma_{a}+F_{i} / A_{t}
$$

Bolted and Riveted Joints Loaded in Shear:

(a) FASTENER IN SHEAR

Failure by pure shear, (a)
$\tau=F / A$, where
$F=$ shear load, and
$A=$ cross-sectional area of bolt or rivet.

(b) MEMBER RUPTURE

Failure by rupture, (b)
$\sigma=F / A$, where
$F=$ load and
$A=$ net cross-sectional area of thinnest member.

(c) MEMBER OR FASTENER CRUSHING

Failure by crushing of rivet or member, (c)

$$
\sigma=F / A \text {, where }
$$

$F=$ load and
$A=$ projected area of a single rivet.

(d) FASTENER GROUPS

Fastener groups in shear, (d)
The location of the centroid of a fastener group with respect to any convenient coordinate frame is:

$$
\bar{x}=\frac{\sum_{i=1}^{n} A_{i} x_{i}}{\sum_{i=1}^{n} A_{i}}, \quad \bar{y}=\frac{\sum_{i=1}^{n} A_{i} y_{i}}{\sum_{i=1}^{n} A_{i}} \text {, where }
$$

$n=$ total number of fasteners,
$i=$ the index number of a particular fastener,
$A_{i}=$ cross-sectional area of the $i$ th fastener,
$x_{i}=x$-coordinate of the center of the $i$ th fastener, and
$y_{i}=y$-coordinate of the center of the $i$ th fastener.
The total shear force on a fastener is the vector sum of the force due to direct shear $P$ and the force due to the moment $M$ acting on the group at its centroid.
The magnitude of the direct shear force due to $P$ is

$$
\left|F_{1 i}\right|=\frac{P}{n} .
$$

This force acts in the same direction as $P$.
The magnitude of the shear force due to $M$ is

$$
\left|F_{2 i}\right|=\frac{M r_{i}}{\sum_{i=1}^{n} r_{i}^{2}}
$$

This force acts perpendicular to a line drawn from the group centroid to the center of a particular fastener. Its sense is such that its moment is in the same direction (CW or CCW) as $M$.

## Press/Shrink Fits

The interface pressure induced by a press/shrink fit is

$$
p=\frac{0.5 \delta}{\frac{r}{E_{o}}\left(\frac{r_{o}^{2}+r^{2}}{r_{o}^{2}-r^{2}}+v_{o}\right)+\frac{r}{E_{i}}\left(\frac{r^{2}+r_{i}^{2}}{r^{2}-r_{i}^{2}}+v_{i}\right)}
$$

where the subscripts $i$ and $o$ stand for the inner and outer member, respectively, and
$p=$ inside pressure on the outer member and outside pressure on the inner member,
$\delta=$ the diametral interference,
$r=$ nominal interference radius,
$r_{i}=$ inside radius of inner member,
$r_{o}=$ outside radius of outer member,
$E=$ Young's modulus of respective member, and
$v=$ Poisson's ratio of respective member.
See the MECHANICS OF MATERIALS section on thick-wall cylinders for the stresses at the interface.

The maximum torque that can be transmitted by a press fit joint is approximately

$$
T=2 \pi r^{2} \mu p l
$$

where $r$ and $p$ are defined above,
$T=$ torque capacity of the joint,
$\mu=$ coefficient of friction at the interface, and
$l=$ length of hub engagement.

## KINEMATICS, DYNAMICS, AND VIBRATIONS

## Kinematics of Mechanisms

Four-bar Linkage


The four-bar linkage shown above consists of a reference (usually grounded) link (1), a crank (input) link (2), a coupler link (3), and an output link (4). Links 2 and 4 rotate about the fixed pivots $O_{2}$ and $O_{4}$, respectively. Link 3 is joined to link 2 at the moving pivot $A$ and to link 4 at the moving pivot $B$. The lengths of links $2,3,4$, and 1 are $a, b, c$, and $d$, respectively. Taking link 1 (ground) as the reference ( $X$-axis), the angles that links 2,3 , and 4 make with the axis are $\theta_{2}, \theta_{3}$, and $\theta_{4}$, respectively. It is possible to assemble a four-bar in two different configurations for a given position of the input link (2). These are known as the "open" and "crossed" positions or circuits.

Position Analysis. Given $a, b, c$, and $d$, and $\theta_{2}$

$$
\begin{aligned}
& \theta_{4_{1,2}}=2 \arctan \left(\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}\right) \\
& \text { where } A=\cos \theta_{2}-K_{1}-K_{2} \cos \theta_{2}+K_{3} \\
& B=2 \sin \theta_{2} \\
& C=K_{1}-\left(K_{2}+1\right) \cos \theta_{2}+K_{3}, \text { and } \\
& \\
& K_{1}=\frac{d}{a}, K_{2}=\frac{d}{c}, K_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c}
\end{aligned}
$$

In the equation for $\theta_{4}$, using the minus sign in front of the radical yields the open solution. Using the plus sign yields the crossed solution.

$$
\begin{aligned}
& \begin{aligned}
\theta_{3_{1,2}} & =2 \arctan \left(\frac{-E \pm \sqrt{E^{2}-4 D F}}{2 D}\right) \\
\text { where } & D=\cos \theta_{2}-K_{1}+K_{4} \cos \theta_{2}+K_{5} \\
E & =-2 \sin \theta_{2} \\
F & =K_{1}+\left(K_{4}-1\right) \cos \theta_{2}+K_{5}, \text { and } \\
& K_{4}=\frac{d}{b}, K_{5}=\frac{c^{2}-d^{2}-a^{2}-b^{2}}{2 a b}
\end{aligned}
\end{aligned}
$$

In the equation for $\theta_{3}$, using the minus sign in front of the radical yields the open solution. Using the plus sign yields the crossed solution.
Velocity Analysis. Given $a, b, c$, and $d, \theta_{2}, \theta_{3}, \theta_{4}$, and $\omega_{2}$

$$
\begin{aligned}
& \omega_{3}=\frac{a \omega_{2}}{b} \frac{\sin \left(\theta_{4}-\theta_{2}\right)}{\sin \left(\theta_{3}-\theta_{4}\right)} \\
& \omega_{4}=\frac{a \omega_{2}}{c} \frac{\sin \left(\theta_{2}-\theta_{3}\right)}{\sin \left(\theta_{4}-\theta_{3}\right)} \\
& V_{A x}=-a \omega_{2} \sin \theta_{2}, \quad V_{A y}=a \omega_{2} \cos \theta_{2} \\
& V_{B A x}=-b \omega_{3} \sin \theta_{3}, \quad V_{B A y}=b \omega_{3} \cos \theta_{3} \\
& V_{B x}=-c \omega_{4} \sin \theta_{4}, \quad V_{B y}=c \omega_{4} \cos \theta_{4}
\end{aligned}
$$

See also Instantaneous Centers of Rotation in the DYNAMICS section.
Acceleration analysis. Given $a, b, c$, and $d, \theta_{2}, \theta_{3}, \theta_{4}$, and $\omega_{2}, \omega_{3}, \omega_{4}$, and $\alpha_{2}$

$$
\begin{gathered}
\alpha_{3}=\frac{C D-A F}{A E-B D}, \quad \alpha_{4}=\frac{C E-B F}{A E-B D}, \text { where } \\
A=c \sin \theta_{4}, B=b \sin \theta_{3} \\
C=a \alpha_{2} \sin \theta_{2}+a \omega_{2}^{2} \cos \theta_{2}+b \omega_{3}^{2} \cos \theta_{3}-c \omega_{4}^{2} \cos \theta_{4} \\
D=c \cos \theta_{4}, E=b \cos \theta_{3} \\
F=a \alpha_{2} \cos \theta_{2}-a \omega_{2}^{2} \sin \theta_{2}-b \omega_{3}^{2} \sin \theta_{3}+c \omega_{4}^{2} \sin \theta_{4}
\end{gathered}
$$

## Gearing

## Involute Gear Tooth Nomenclature

Circular pitch $\quad p_{c}=\pi d / N$
Base pitch $\quad p_{b}=p_{c} \cos \phi$
Module $\quad m=d / N$
Center distance $C=\left(d_{1}+d_{2}\right) / 2$
where
$N=$ number of teeth on pinion or gear
$d=$ pitch circle diameter
$\phi=$ pressure angle
Gear Trains: Velocity ratio, $m_{v}$, is the ratio of the output velocity to the input velocity. Thus, $m_{v}=\omega_{\text {out }} / \omega_{i n}$. For a two-gear train, $m_{v}=-N_{\text {in }} / N_{\text {out }}$ where $N_{\text {in }}$ is the number of teeth on the input gear and $N_{\text {out }}$ is the number of teeth on the output gear. The negative sign indicates that the output gear rotates in the opposite sense with respect to the input gear. In a compound gear train, at least one shaft carries more than one gear (rotating at the same speed). The velocity ratio for a compound train is:

$$
m_{v}= \pm \frac{\text { product of number of teeth on driver gears }}{\text { product of number of teeth on driven gears }}
$$

A simple planetary gearset has a sun gear, an arm that rotates about the sun gear axis, one or more gears (planets) that rotate about a point on the arm, and a ring (internal) gear that is concentric with the sun gear. The planet gear(s) mesh with the sun gear on one side and with the ring gear on the other. A planetary gearset has two independent inputs and one output (or two outputs and one input, as in a differential gearset).
Often, one of the inputs is zero, which is achieved by grounding either the sun or the ring gear. The velocities in a planetary set are related by

$$
\frac{\omega_{f}-\omega_{\text {arm }}}{\omega_{L}-\omega_{\text {arm }}}= \pm m_{v}, \text { where }
$$

$\omega_{f}=$ speed of the first gear in the train,
$\omega_{L}=$ speed of the last gear in the train, and
$\omega_{\text {arm }}=$ speed of the arm.
Neither the first nor the last gear can be one that has planetary motion. In determining $m_{v}$, it is helpful to invert the mechanism by grounding the arm and releasing any gears that are grounded.

## Dynamics of Mechanisms

## Gearing

Loading on Straight Spur Gears: The load, W, on straight spur gears is transmitted along a plane that, in edge view, is called the line of action. This line makes an angle with a tangent line to the pitch circle that is called the pressure angle $\phi$. Thus, the contact force has two components: one in the tangential direction, $W_{t}$, and one in the radial direction, $W_{r}$. These components are related to the pressure angle by

$$
W_{r}=W_{t} \tan (\phi)
$$

Only the tangential component $W_{t}$ transmits torque from one gear to another. Neglecting friction, the transmitted force may be found if either the transmitted torque or power is known:

$$
\begin{aligned}
& W_{t}=\frac{2 T}{d}=\frac{2 T}{m N}, \\
& W_{t}=\frac{2 H}{d \omega}=\frac{2 H}{m N \omega}, \text { where }
\end{aligned}
$$

$W_{t}=$ transmitted force (newton),
$T=$ torque on the gear (newton-mm),
$d=$ pitch diameter of the gear $(\mathrm{mm})$,
$N=$ number of teeth on the gear,
$m=$ gear module (mm) (same for both gears in mesh),
$H=$ power $(\mathrm{kW})$, and
$\omega=$ speed of gear ( $\mathrm{rad} / \mathrm{sec}$ ) .
Stresses in Spur Gears: Spur gears can fail in either bending (as a cantilever beam, near the root) or by surface fatigue due to contact stresses near the pitch circle. AGMA Standard 2001 gives equations for bending stress and surface stress. They are:

$$
\begin{aligned}
\sigma_{b} & =\frac{W_{t}}{F m J} \frac{K_{a} K_{m}}{K_{v}} K_{s} K_{B} K_{I}, \text { bending and } \\
\sigma_{c} & =C_{p} \sqrt{\frac{W_{t}}{F I d} \frac{C_{a} C_{m}}{C_{v}} C_{s} C_{f}}, \text { surface stress, where }
\end{aligned}
$$

$\sigma_{b}=$ bending stress,
$\sigma_{c}=$ surface stress,
$W_{t}=$ transmitted load,
$F=$ face width,
$m=$ module,
$J=$ bending strength geometry factor,
$K_{a}=$ application factor,
$K_{B}=$ rim thickness factor,
$K_{l}=$ idler factor,
$K_{m}=$ load distribution factor,
$K_{s}=$ size factor,
$K_{v}=$ dynamic factor,
$C_{p}=$ elastic coefficient,
$I=$ surface geometry factor,
$d=$ pitch diameter of gear being analyzed, and
$C_{f}=$ surface finish factor.
$C_{a}, C_{m}, C_{s}$, and $C_{v}$ are the same as $K_{a}, K_{m}, K_{s}$, and $K_{v}$, respectively.

## Rigid Body Dynamics

See DYNAMICS section.

## Natural Frequency and Resonance <br> See DYNAMICS section.

## Balancing of Rotating and Reciprocating <br> Equipment

Static (Single-plane) Balance

$$
\begin{aligned}
& m_{b} R_{b x}=-\sum_{i=1}^{n} m_{i} R_{i x}, \quad m_{b} R_{b y}=-\sum_{i=1}^{n} m_{i} R_{i y} \\
& \theta_{b}=\arctan \left(\frac{m_{b} R_{b y}}{m_{b} R_{b x}}\right) \\
& m_{b} R_{b}=\sqrt{\left(m_{b} R_{b x}\right)^{2}+\left(m_{b} R_{b y}\right)^{2}}
\end{aligned}
$$

where $\quad m_{b}=$ balance mass
$R_{\mathrm{b}}=$ radial distance to CG of balance mass
$m_{i}=i$ th point mass
$R_{i}=$ radial distance to CG of the ith point mass
$\theta_{b}=$ angle of rotation of balance mass CG with respect to a reference axis
$x, y=$ subscripts that designate orthogonal components
Dynamic (Two-plane) Balance


Two balance masses are added (or subtracted), one each on planes $A$ and $B$.
$m_{B} R_{B x}=-\frac{1}{l_{B}} \sum_{i=1}^{n} m_{i} R_{i x} l_{i}, \quad m_{B} R_{B y}=-\frac{1}{l_{B}} \sum_{i=1}^{n} m_{i} R_{i y} l_{i}$
$m_{A} R_{A x}=-\sum_{i=1}^{n} m_{i} R_{i x}-m_{B} R_{B x}$
$m_{A} R_{A y}=-\sum_{i=1}^{n} m_{i} R_{i y}-m_{B} R_{B y}$
where
$m_{A}=$ balance mass in the A plane
$m_{B}=$ balance mass in the B plane
$R_{A}=$ radial distance to CG of balance mass
$R_{B}=$ radial distance to CG of balance mass
and $\theta_{A}, \theta_{B}, R_{A}$, and $R_{B}$ are found using the relationships given in Static Balance above.

## Balancing Equipment

The figure below shows a schematic representation of a tire/wheel balancing machine.


Ignoring the weight of the tire and its reactions at 1 and 2 ,

$$
\begin{aligned}
& F_{1 x}+F_{2 x}+m_{A} R_{A x} \omega^{2}+m_{B} R_{B x} \omega^{2}=0 \\
& F_{1 y}+F_{2 y}+m_{A} R_{A y} \omega^{2}+m_{B} R_{B y} \omega^{2}=0 \\
& F_{1 x} l_{1}+F_{2 x} l_{2}+m_{B} R_{B x} \omega^{2} l_{B}=0 \\
& F_{1 y} l_{1}+F_{2 y} l_{2}+m_{B} R_{B y} \omega^{2} l_{B}=0 \\
& m_{B} R_{B x}=\frac{F_{1 x} l_{1}+F_{2 x} l_{2}}{l_{B} \omega^{2}} \\
& m_{B} R_{B y}=\frac{F_{1 y} l_{1}+F_{2 y} l_{2}}{l_{B} \omega^{2}} \\
& m_{A} R_{A x}=-\frac{F_{1 x}+F_{2 x}}{\omega^{2}}-m_{b} R_{B x} \\
& m_{A} R_{A y}=-\frac{F_{1 y}+F_{2 y}}{\omega^{2}}-m_{b} R_{B y}
\end{aligned}
$$

## MATERIALS AND PROCESSING

Mechanical and Thermal Properties
See MATERIALS SCIENCE section.
Thermal Processing
See MATERIALS SCIENCE section.

## Testing

See MECHANICS OF MATERIALS section.

MEASUREMENTS, INSTRUMENTATION, AND CONTROL

## Mathematical Fundamentals

See DIFFERENTIAL EQUATIONS and LAPLACE TRANSFORMS in the MATHEMATICS section, and the Response segment of the CONTROL SYSTEMS section.

## System Descriptions

See LAPLACE TRANSFORMS in the MATHEMATICS section and the Response segment of the CONTROL SYSTEMS section.

## Sensors and Signal Conditioning

See the Measurements segment of the MEASUREMENT and CONTROLS section and the Analog Filter Circuits segment of the ELECTRICAL and COMPUTER ENGINEERING section.

## Data Collection and Processing

See the Sampling segment of the MEASUREMENT and CONTROLS section.

## Dynamic Response

See the Response segment of the CONTROL
SYSTEMS section.

## THERMODYNAMICS AND ENERGY <br> CONVERSION PROCESSES

## Ideal and Real Gases

See THERMODYNAMICS section.

## Reversibility/Irreversibility

See THERMODYNAMICS section.
Thermodynamic Equilibrium See THERMODYNAMICS section.

## Psychrometrics

See additional material in THERMODYNAMICS section.
HVAC-Pure Heating and Cooling

$\dot{Q}=\dot{m}_{a}\left(h_{2}-h_{1}\right)=\dot{m}_{a} C_{p m}\left(T_{2}-T_{1}\right)$
$C_{p m}=1.02 \mathrm{~kJ} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$

## Cooling and Dehumidification



## Heating and Humidification



T
$\dot{Q}_{\mathrm{in}}=\dot{m}_{\mathrm{a}}\left(h_{2}-h_{1}\right)$
$\dot{m}_{\mathrm{w}}=\dot{m}_{\mathrm{a}}\left(\omega_{4^{\prime}}-\omega_{2}\right)$ or $\dot{m}_{\mathrm{w}}=\left(\omega_{4}-\omega_{2}\right)$

Adiabatic Humidification (evaporative cooling)


Adiabatic Mixing

distance $\overline{13}=\frac{\dot{m}_{a 2}}{\dot{m}_{a 3}} \times$ distance $\overline{12}$ measured on psychrometric chart

## Performance of Components

Fans, Pumps, and Compressors
Scaling Laws

$$
\begin{aligned}
& \left(\frac{Q}{N D^{3}}\right)_{2}=\left(\frac{Q}{N D^{3}}\right)_{1} \\
& \left(\frac{\dot{m}}{\rho N D^{3}}\right)_{2}=\left(\frac{\dot{m}}{\rho N D^{3}}\right)_{1} \\
& \left(\frac{H}{N^{2} D^{2}}\right)_{2}=\left(\frac{H}{N^{2} D^{2}}\right)_{1} \\
& \left(\frac{P}{\rho N^{2} D^{2}}\right)_{2}=\left(\frac{P}{\rho N^{2} D^{2}}\right)_{1} \\
& \left(\frac{\dot{W}}{\rho N^{3} D^{5}}\right)_{2}=\left(\frac{\dot{W}}{\rho N^{3} D^{5}}\right)_{1}
\end{aligned}
$$

where
$Q=$ volumetric flow rate,
$\dot{m}=$ mass flow rate,
$H=$ head,
$P=$ pressure rise,
$\dot{W}=$ power,
$\rho=$ fluid density,
$N=$ rotational speed, and
$D=$ impeller diameter.
Subscripts 1 and 2 refer to different but similar machines or to different operating conditions of the same machine.

## Fan Characteristics



## Typical Backward Curved Fans

$$
\dot{W}=\frac{\Delta P Q}{\eta_{f}} \text {, where }
$$

$\dot{W}=$ fan power,
$\Delta P=$ pressure rise, and
$\eta_{f}=$ fan efficiency.
Pump Characteristics


Net Positive Suction Head (NPSH)

$$
N P S H=\frac{P_{i}}{\rho g}+\frac{V_{i}^{2}}{2 g}-\frac{P_{v}}{\rho g}, \text { where }
$$

$P_{i}=$ inlet pressure to pump,
$V_{i}=$ velocity at inlet to pump, and
$P_{v}=$ vapor pressure of fluid being pumped.
$\dot{W}=\frac{\rho g H Q}{\eta}$, where
$\dot{W}=$ pump power,
$\eta=$ pump efficiency, and
$H=$ head increase.

## Cycles and Processes

Internal Combustion Engines
Otto Cycle (see THERMODYNAMICS section)
Diesel Cycle


$\mathrm{r}=V_{1} / V_{2}$
$\mathrm{r}_{c}=V_{3} / V_{2}$
$\eta=1-\frac{1}{r^{k-1}}\left[\frac{r_{c}^{k}-1}{k\left(r_{c}-1\right)}\right]$
$k=c_{P} / c_{v}$

## Brake Power

$$
\dot{W}_{b}=2 \pi T N=2 \pi F R N, \text { where }
$$

$\dot{W}_{b}=$ brake power (W),
$T=$ torque ( $\mathrm{N} \cdot \mathrm{m}$ ),
$N=$ rotation speed (rev/s),
$F=$ force at end of brake arm (N), and
$R=$ length of brake arm (m).


## Indicated Power

$$
\dot{W}_{i}=\dot{W}_{b}+\dot{W}_{f} \text {, where }
$$

$\dot{W}_{i}=$ indicated power (W), and
$\dot{W}_{f}=$ friction power (W).
Brake Thermal Efficiency

$$
\begin{aligned}
& \eta_{b}=\frac{\dot{W}_{b}}{\dot{m}_{f}(H V)}, \text { where } \\
\eta_{b} & =\quad \text { brake thermal efficiency, } \\
\dot{m}_{f} & =\quad \text { fuel consumption rate }(\mathrm{kg} / \mathrm{s}), \text { and } \\
H V & =\quad \text { heating value of fuel }(\mathrm{J} / \mathrm{kg}) .
\end{aligned}
$$

## Indicated Thermal Efficiency

$$
\eta_{i}=\frac{\dot{W}_{i}}{\dot{m}_{f}(H V)}
$$

Mechanical Efficiency

$$
\eta_{m}=\frac{\dot{W}_{b}}{\dot{W}_{i}}=\frac{\eta_{b}}{\eta_{i}}
$$



## Displacement Volume

$$
V_{d}=\frac{\pi B^{2} S}{4}, \mathrm{~m}^{3} \text { for each cylinder }
$$

$$
\text { Total volume }=V_{t}=V_{d}+V_{c}, \mathrm{~m}^{3}
$$

$V_{c}=$ clearance volume ( $\mathrm{m}^{3}$ ).
Compression Ratio

$$
r_{c}=V_{t} / V_{c}
$$

Mean Effective Pressure (mep)

$$
\text { mep }=\frac{\dot{W}_{s}}{V_{d} n_{c} N} \text {, where }
$$

$n_{s}=$ number of crank revolutions per power stroke,
$n_{c}=$ number of cylinders, and
$V_{d}=$ displacement volume per cylinder.
mep can be based on brake power (bmep), indicated power (imep), or friction power (fmep).
Volumetric Efficiency

$$
\eta_{v}=\frac{2 \dot{m}_{a}}{\rho_{a} V_{d} n_{c} N} \quad \text { (four-stroke cycles only) }
$$

where
$\dot{m}_{a}=$ mass flow rate of air into engine ( $\mathrm{kg} / \mathrm{s}$ ), and
$\rho_{a}=$ density of air $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
Specific Fuel Consumption (SFC)

$$
s f c=\frac{\dot{m}_{f}}{\dot{W}}=\frac{1}{\eta H V}, \quad \mathrm{~kg} / \mathrm{J}
$$

Use $\eta_{b}$ and $\dot{W}_{b}$ for $b s f c$ and $\eta_{i}$ and $\dot{W}_{i}$ for $i s f c$.

## Gas Turbines

Brayton Cycle (Steady-Flow Cycle)



$$
\begin{aligned}
w_{12} & =h_{1}-h_{2}=c_{P}\left(T_{1}-T_{2}\right) \\
w_{34} & =h_{3}-h_{4}=c_{P}\left(T_{3}-T_{4}\right) \\
w_{\text {net }} & =w_{12}+w_{34} \\
q_{23} & =h_{3}-h_{2}=c_{P}\left(T_{3}-T_{2}\right) \\
q_{41} & =h_{1}-h_{4}=c_{P}\left(T_{1}-T_{4}\right) \\
q_{\text {net }} & =q_{23}+q_{41} \\
\eta & =w_{\text {net }} / q_{23}
\end{aligned}
$$

Steam Power Plants
Feedwater Heaters


Steam Trap


$$
\mathrm{h}_{2}=\mathrm{h}_{1}
$$

Junction


$$
\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=h_{3}\left(\dot{m}_{1}+\dot{m}_{2}\right)
$$

Pump


$$
\begin{aligned}
& w=h_{1}-h_{2}=\left(h_{1}-h_{2 s}\right) / \eta_{p} \\
& h_{2 s}-h_{1}=v\left(P_{2}-P_{1}\right) \\
& w=-\frac{v\left(P_{2}-P_{1}\right)}{\eta_{p}}
\end{aligned}
$$

See also THERMODYNAMICS section.

## Combustion and Combustion Products

See THERMODYNAMICS section

## Energy Storage

Energy storage comes in several forms, including chemical, electrical, mechanical, and thermal. Thermal storage can be either hot or cool storage. There are numerous applications in the HVAC industry where cool storage is utilized. The cool storage applications include both ice and chilled water storage. A typical chilled water storage system can be utilized to defer high electric demand rates, while taking advantage of cheaper off-peak power. A typical facility load profile is shown below.


The thermal storage tank is sized to defer most or all of the chilled water requirements during the electric utility's peak demand period, thus reducing electrical demand charges. The figure above shows a utility demand window of 8 hours (noon to 8 pm ), but the actual on-peak period will vary from utility to utility. The Monthly Demand Reduction (MDR), in dollars per month, is

$$
M D R=\Delta P_{\text {on-peak }} R, \text { where }
$$

$\Delta P_{\text {on-peak }}=$ Reduced on-peak power, kW
$R=$ On-peak demand rate, $\$ / \mathrm{kW} /$ month
The $M D R$ is also the difference between the demand charge without energy storage and that when energy storage is in operation.
A typical utility rate structure might be four months of peak demand rates (June - September) and eight months of offpeak demand rates (October - May). The customer's utility obligation will be the sum of the demand charge and the kWh energy charge.

## FLUID MECHANICS AND FLUID MACHINERY

## Fluid Statics

See FLUID MECHANICS section.

## Incompressible Flow

See FLUID MECHANICS section.

## Fluid Machines (Incompressible)

See FLUID MECHANICS section and Performance of Components above.

## Compressible Flow

## Mach Number

The local speed of sound in an ideal gas is given by:

$$
\begin{aligned}
c & =\sqrt{k R T}, \text { where } \\
c & \equiv \text { local speed of sound } \\
k & \equiv \text { ratio of specific heats }=\frac{C_{p}}{C_{v}} \\
R & \equiv \text { gas constant } \\
T & \equiv \text { absolute temperature }
\end{aligned}
$$

This shows that the acoustic velocity in an ideal gas depends only on its temperature. The Mach number (Ma) is the ratio of the fluid velocity to the speed of sound.
$\mathrm{Ma} \equiv \frac{V}{c}$
$V \equiv$ mean fluid velocity

## Isentropic Flow Relationships

In an ideal gas for an isentropic process, the following relationships exist between static properties at any two points in the flow.

$$
\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{k}{(k-1)}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{k}
$$

The stagnation temperature, $T_{0}$, at a point in the flow is related to the static temperature as follows:

$$
T_{0}=T+\frac{V^{2}}{2 \cdot C_{p}}
$$

The relationship between the static and stagnation properties ( $T_{0}, P_{0}$, and $\rho_{0}$ ) at any point in the flow can be expressed as a function of the Mach number as follows:

$$
\begin{aligned}
& \frac{T_{0}}{T}=1+\frac{k-1}{2} \cdot \mathrm{Ma}^{2} \\
& \frac{P_{0}}{P}=\left(\frac{T_{0}}{T}\right)^{\frac{k}{(k-1)}}=\left(1+\frac{k-1}{2} \cdot \mathrm{Ma}^{2}\right)^{\frac{k}{(k-1)}} \\
& \frac{\rho_{0}}{\rho}=\left(\frac{T_{0}}{T}\right)^{\frac{1}{(k-1)}}=\left(1+\frac{k-1}{2} \cdot \mathrm{Ma}^{2}\right)^{\frac{1}{(k-1)}}
\end{aligned}
$$

Compressible flows are often accelerated or decelerated through a nozzle or diffuser. For subsonic flows, the velocity decreases as the flow cross-sectional area increases and vice versa. For supersonic flows, the velocity increases as the flow cross-sectional area increases and decreases as the flow cross-sectional area decreases. The point at which the Mach number is sonic is called the throat and its area is represented by the variable, $A^{*}$. The following area ratio holds for any Mach number.

$$
\frac{A}{A^{*}}=\frac{1}{\mathrm{Ma}}\left[\frac{1+\frac{1}{2}(k-1) \mathrm{Ma}^{2}}{\frac{1}{2}(k+1)}\right]^{\frac{(k+1)}{2(k-1)}}
$$

where

$$
\begin{aligned}
& A \equiv \text { area }\left[\text { length }{ }^{2}\right] \\
& A^{*} \equiv \text { area at the sonic point }(\mathrm{Ma}=1.0)
\end{aligned}
$$

## Normal Shock Relationships

A normal shock wave is a physical mechanism that slows a flow from supersonic to subsonic. It occurs over an infinitesimal distance. The flow upstream of a normal shock wave is always supersonic and the flow downstream is always subsonic as depicted in the figure.


## NORMAL SHOCK

The following equations relate downstream flow conditions to upstream flow conditions for a normal shock wave.

$$
\begin{aligned}
& \mathrm{Ma}_{2}=\sqrt{\frac{(k-1) \mathrm{Ma}_{1}^{2}+2}{2 k \mathrm{Ma}_{1}^{2}-(k-1)}} \\
& \frac{T_{2}}{T_{1}}=\left[2+(k-1) \mathrm{Ma}_{1}^{2}\right] \frac{2 k \mathrm{Ma}_{1}^{2}-(k-1)}{(k+1)^{2} \mathrm{Ma}_{1}^{2}} \\
& \frac{P_{2}}{P_{1}}=\frac{1}{k+1}\left[2 k \mathrm{Ma}_{1}^{2}-(k-1)\right] \\
& \frac{\rho_{2}}{\rho_{1}}=\frac{V_{1}}{V_{2}}=\frac{(k+1) \mathrm{Ma}_{1}^{2}}{(k-1) \mathrm{Ma}_{1}^{2}+2} \\
& T_{01}=T_{02}
\end{aligned}
$$

## Fluid Machines (Compressible)

Compressors
Compressors consume power in order to add energy to the fluid being worked on. This energy addition shows up as an increase in fluid pressure (head).


For an adiabatic compressor with $\triangle P E=0$ and negligible $\Delta K E$ :

$$
\dot{W}_{\text {comp }}=-\dot{m}\left(h_{e}-h_{i}\right)
$$

For an ideal gas with constant specific heats:

$$
\dot{W}_{c o m p}=-\dot{m} C_{p}\left(T_{e}-T_{i}\right)
$$

Per unit mass:

$$
w_{\text {comp }}=-C_{p}\left(T_{e}-T_{i}\right)
$$

Compressor Isentropic Efficiency:

$$
\begin{aligned}
\eta_{C}= & \frac{w_{s}}{w_{a}}=\frac{T_{e s}-T_{i}}{T_{e}-T_{i}} \quad \text { where }, \\
w_{a} \equiv & \text { actual compressor work per unit mass } \\
w_{s} \equiv & \text { isentropic compressor work per unit mass } \\
T_{e s} \equiv & \text { isentropic exit temperature } \\
& (\text { see THERMODYNAMICS section) }
\end{aligned}
$$

For a compressor where $\triangle K E$ is included:

$$
\begin{aligned}
\dot{W}_{\text {comp }} & =-\dot{m}\left(h_{e}-h_{i}+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right) \\
& =-\dot{m}\left(C_{p}\left(T_{e}-T_{i}\right)+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right)
\end{aligned}
$$

## Turbines

Turbines produce power by extracting energy from a working fluid. The energy loss shows up as a decrease in fluid pressure (head).


For an adiabatic turbine with $\triangle P E=0$ and negligible $\triangle K E$ :

$$
\dot{W}_{t u r b}=\dot{m}\left(h_{i}-h_{e}\right)
$$

For an ideal gas with constant specific heats:

$$
\dot{W}_{\text {turb }}=\dot{m} C_{p}\left(T_{i}-T_{e}\right)
$$

Per unit mass:

$$
w_{\text {turb }}=C_{p}\left(T_{i}-T_{e}\right)
$$

Compressor Isentropic Efficiency:

$$
\eta_{T}=\frac{w_{a}}{w_{s}}=\frac{T_{i}-T_{e}}{T_{i}-T_{e s}}
$$

For a compressor where $\Delta K E$ is included:

$$
\begin{aligned}
\dot{W}_{\text {turb }} & =\dot{m}\left(h_{e}-h_{i}+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right) \\
& =\dot{m}\left(C_{p}\left(T_{e}-T_{i}\right)+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right)
\end{aligned}
$$

Operating Characteristics
See Performance of Components above.

## Lift/Drag

See FLUID MECHANICS section.

## Impulse/Momentum

See FLUID MECHANICS section.

## HEAT TRANSFER

## Conduction

See HEAT TRANSFER and TRANSPORT PHENOMENA sections.

## Convection

See HEAT TRANSFER section.

## Radiation

See HEAT TRANSFER section.
Composite Walls and Insulation See HEAT TRANSFER section.
Transient and Periodic Processes
See HEAT TRANSFER section.

## Heat Exchangers

See HEAT TRANSFER section.
Boiling and Condensation Heat Transfer See HEAT TRANSFER section.

## REFRIGERATION AND HVAC

## Cycles

## Refrigeration and HVAC

Two-Stage Cycle


The following equations are valid if the mass flows are the same in each stage.

$$
\begin{aligned}
& C O P_{\mathrm{ref}}=\frac{\dot{Q}_{\mathrm{in}}}{\dot{W}_{\mathrm{in}, 1}+\dot{W}_{\mathrm{in}, 2}}=\frac{h_{5}-h_{8}}{h_{2}-h_{1}+h_{6}-h_{5}} \\
& C O P_{\mathrm{HP}}=\frac{\dot{Q}_{\mathrm{out}}}{\dot{W}_{\mathrm{in}, 1}+\dot{W}_{\mathrm{in}, 2}}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}+h_{6}-h_{5}}
\end{aligned}
$$

Air Refrigeration Cycle



See also THERMODYNAMICS section.

## Heating and Cooling Loads

Heating Load


$$
\begin{aligned}
& \dot{Q}=A\left(T_{i}-T_{o}\right) / R^{\prime \prime} \\
& R^{\prime \prime}=\frac{1}{h_{1}}+\frac{L_{1}}{k_{1}}+\frac{L_{2}}{k_{2}}+\frac{L_{3}}{k_{3}}+\frac{1}{h_{2}}, \text { where }
\end{aligned}
$$

$\dot{Q}=$ heat transfer rate,
$A=$ wall surface area, and
$R^{\prime \prime}=$ thermal resistance.
Overall heat transfer coefficient $=U$

$$
\begin{aligned}
U & =1 / R^{\prime \prime} \\
\dot{Q} & =U A\left(T_{i}-T_{o}\right)
\end{aligned}
$$

## Cooling Load

$\dot{Q}=U A$ (CLTD), where
CLTD $=$ effective temperature difference.
CLTD depends on solar heating rate, wall or roof orientation, color, and time of day.

Infiltration
Air change method

$$
\dot{Q}=\frac{\rho_{a} c_{p} V n_{A C}}{3,600}\left(T_{i}-T_{o}\right) \text {, where }
$$

$\rho_{a}=$ air density,
$c_{P}=$ air specific heat,
$V=$ room volume,
$n_{A C}=$ number of air changes per hour,
$T_{i}=$ indoor temperature, and
$T_{o}=$ outdoor temperature.

Crack method

$$
\dot{Q}=1.2 C L\left(T_{i}-T_{o}\right)
$$

where
$C=$ coefficient, and
$L=$ crack length.
See also HEAT TRANSFER section.

## Psychrometric Charts

See THERMODYNAMICS section.

## Coefficient of Performance (COP)

See section above and THERMODYNAMICS section.

## Components

See THERMODYNAMICS section and above sections.

## A

AASHTO, automobile pavement design, 141
AC circuits, 169
AC machines, 172
Accelerated Cost Recovery System (ACRS), 93
acids, 77
acids and bases, 78
activated carbon adsorption, 161
activated sludge, 159
activity coefficients, 103
addition, 6
adiabatic process, 60
aerobic digestion design, 160
air refrigeration cycle, 217
air stripping, 161
air-to-cloth ratio, 147
alcohols, 101
aldehydes, 101
algebra of complex numbers, 169
amorphous materials and glasses, 86
analysis of variance for $2^{\mathrm{n}}$ factorial designs, 193
anion, 78
anode, 78
anode reaction (oxidation), 82
anthropometric measurements, 200
approximations, 190
Archimedes principle and buoyancy, 45
area formulas for surveying, 142
arithmetic progression, 7
Arrhenius function, 104
ASHRAE psychrometric chart No. 1, 65
ASTM, 203
ASTM grain size, 84
atmospheric dispersion modeling, 143
atomic bonding, 82
atomic number, 78
automobile pavement design, 141
average and range charts, 189
average value, 169
Avogadro's number, 78

## B

backwash, 164
baghouse filters, 147
balanced three-phase systems, 171
ball/roller bearing selection, 204
bases, 77
basic cycles, 58
batch reactor, 105
batch reactor constant T and $\mathrm{V}, 104$
beam design, steel (LRFD, ASD), 122
allowable moments curves (ASD), 135
design moments curves (LRFD), 135
beam fixed-end moment formulas, 114
beam-columns, steel, 124
bearing strength, 125
bed expansion, 164
belt friction, 25
benefit-cost analysis, 93
binary phase diagrams, 59
binomial distribution, 16
bioconcentration factor, 149
biodegradation of glucose with no product, 76
biomechanics of the human body, 194
biotower, 160
bipolar junction transistor (BJT), 182, 183
BOD, 148
BOD exertion, 148
boilers, condensers, evaporators, one side in a heat exchanger, 57
boiling point elevation, 78
bolted and riveted joints loaded in shear, 205
bonds, 93
book value, 93
brake power, 212
brake thermal efficiency, 212
Brayton cycle (steady-flow cycle), 213
break-even analysis, 92
break-through time for leachate to penetrate a clay liner, 150

## C

cancer slope factor, 155
canonical product of sums (POS), 188
canonical sum of products (SOP), 188
capacitors and inductors, 168
capacitors and inductors in parallel and series, 168
capatalized costs, 93
carbon balance, 76
carboxylic acids, 101
Carmen-Kozeny equation, 163
Carnot Cycle, 58
catalyst, 78
cathode, 78
cation, 78
cellular biology, 74
centroids and moments of inertia, 12
centroids of masses, areas, lengths, and volumes, 24
chemical
reaction engineering, 104
reaction equilibrium, 103
thermodynamics, 103
chemical names, 102
chemical process safety, 109
circle, 4
circular sector, 10
circular segment, 10
clarification, 162
clarifier, 162
classification of polymers, 86
Clausius' statement of second law, 60
closed thermodynamic system, 56
closed-system availability, 60
column design, steel, 123
allowable stress table (ASD), 134
column effective length KL, 123
K-values and alignment chart, 130
columns
Euler's formula, 42
steel design, 123
combustion
in air, 59
in excess air, 59
incomplete, 59
processes, 59
common metallic crystal structures, 82
common names and molecular formulas of some industrial (inorganic and organic) chemicals, 102
common thermodynamic cycles, 61
complex numbers, 5, 169
complex power, 171
composite materials, 85
compressible fluid, 50
compression ratio, 212
concentration in the atmosphere, 110
concentrations of vaporized liquids, 110
concrete, 85
concurrent forces, 25
condensation
outside horizontal tubes, 69
pure vapor on a vertical surface, 69
conduction, 67
through a plane wall, 67
conductive heat transfer, 70
confidence interval, 19
confidence interval for a, 17, 192
confidence interval for b, 17, 192
conic section equation, 4
conic sections, 3
construction, 140
continuity equation, 45
continuous distillation (binary system), 106
continuous stirred tank reactor (CSTR), 105
continuous stirred tank reactors in series, 105
control systems, 88
convection, 67, 105
convolution, 174
cooling and dehumidification, 210
cooling load, 217
coordination number, 82
corollary, 60
corrosion, 82
CPM precedence relationships (activity on node), 140
creep, 83
critical depth, 136
Critical Path Method (CPM), 195
critical values of the F distribution table, 22
critical values of $\mathrm{x}^{2}$ - table, 23
critically damped, 12,89
crystallography, 82
CSF, 155
current, 167
curvature in rectangular coordinates, 8
curvature of any curve, 8
cyclone $50 \%$ collection efficiency for particle diameter, 146
cyclone collection efficiency, 146
cyclone dimensions, 146
cyclone separator, 146
cylindrical pressure vessel, 38

## D

Darcy's Equation, 111
Darcy's law, 135
data quality objectives (DQO) for sampling soils and solids, 151
DC machines, 172
deflection of beams, 42
deflection of trusses and frames, 114
deflectors and blades, 49
degrees of reduction, 76
DeMorgan's theorem, 187
density, specific volume, specific weight, and specific gravity, 44
depreciation, 93
depth of sorption zone, 161
derivative, 8
derivatives and indefinite integrals, 9
design criteria for sedimentation basins, 162
design data for clarifiers for activated-sludge systems, 162
design of experiments two-way anova table, 196
determinants, 6
Deutsch equation, 147
difference equations, 13,174
differential (simple or Rayleigh) distillation, 106
differential calculus, 8
differential equations, 12
diffusion, 82, 105
diffusion coefficient, 82
digital signal processing, 175
dimensional homogeneity and dimensional analysis, 52
dimensionless group equation (Sherwood), 105
dimensions, 163
diodes, 183
dispersion, mean, median, and mode value, 15
displacement volume, 212
distortion-energy theory, 40
distribution, 16, 17
dose-response curve, 155
DQO, 151
drag coefficients for spheres, disks, and cylinders, 55
dual linear program, 189

## E

earthwork formulas, 142
effect of overburden pressure, 150
effective or RMS values, 169
effective stack height, 143
elastic strain energy, 42
electrochemistry, 78
electrodialysis, 163
electromagnetic dynamic fields, 172
electron, 76
electrostatic fields, 167
electrostatic precipitator, 147
electrostatics, 167
ellipse, 3, 10
endurance limit, 40
endurance limit modifying factors, 41
endurance test, 83
energy balance, 76
energy line (Bernoulli equation), 47
engineering strain, 38
enhancement MOSFET (low and medium frequency), 186
entropy, 60
entropy change for solids and liquids, 60
equilibrium constant of a chemical reaction, 78
equimolar counter-diffusion (gases), 105
equipment requirements, 194
equivalent mass, 78
ergonomics, 194
hearing, 201, 202
essential prime implicant, 188
ethers, 101
Euler's
formula, 42
identity, 5
Euler's approximation, 14
exponentially weighted moving average, 191

## F

facility planning, 194
factorial experiments, 192
facultative pond, 161
fan characteristics, 211
fans, pumps, and compressors, 211
Faraday's law, 78, 167
fastener groups in shear, 206
fatigue loading, 205
feed condition line, 106
feedwater heaters, 213
field equation, 46
filtration, 163
fire diamond, 153
First Law (energy balance), 57
first Law of Thermodynamics, 56
first-order linear difference equation, 13, 174
first-order linear homogeneous differential equations with constant coefficients, 12
first-order linear nonhomogeneous differential equations, 12
first-order reaction, 104
fixed blade, 49
fixed film, 162
fixed-film equation with recycle, 160
fixed-film equation without recycle, 160
flammability, 109
Flammable, 153
flash (or equilibrium) distillation, 106
flip-flops, 188
flocculation, 162
flow
in noncircular conduits, 47
open-channel, 136
parallel to a constant-temperature flat plate, 69
past a constant-temperature sphere, 70
perpendicular to axis of a constant-temperature circular cylinder, 69
flow reactors, steady state, 105
fluid flow, 46
fluid measurements, 50
force, 24
forces on submerged surfaces and the center of pressure, 45
forecasting, 191
fouling factor, 68
Fourier series, 173
fourier transform, 13
four-variable Karnaugh map, 188
freezing point depression, 78
Freundlich isotherm, 161
friction, 25
friction factor for Laminar flow, 47
friction factor to predict heat-transfer and mass transfer coefficients, 73
Froude number, 136
fundamental constants, 1
fundamental relationships, 190

## G

gain margin, 88
gamma function, 17
gas constant, $1,56,58,82,110$
gas flux, 150
gas turbines, 213
Gaussian, 143
gear trains, 207
geometric progression, 7
geotechnical definitions, 111
Gibbs
free energy, 60
phase rule, 59
gradient, divergence, and curl, 7
H
half-life, 151
hardenability, 84
hardness, 84
hazard index, 155

Hazen-Williams equation, 49, 137
head loss through clean bed, 163
heat
capacity, 66
engines, 58
exchangers, 57
transfer rate in a tubular heat exchanger, 69
transfer to/from bodies immersed in a large body of flowing fluid, 69
heat transfer, 67, 73
heating and humidification, 210
heats of reaction, 104
heats of reaction, solution, formation, and combustion, 78
heat-transfer coefficient, 68
helical linear springs, 203
helical torsion springs, 203
Helmholtz free energy, 60
Henry's law at constant temperature, 60
hollow, thin-walled shafts, 41
Hooke's law, 39
horizontal curve formulas, 139
horizontal velocties, 163
HVAC - pure heating and cooling, 209
hydraulic diameter, 47
hydraulic gradient (grade line), 47
hydraulic radius, 47, 49, 137
hydraulic-elements graph for circular sewers, 136
hydrology, 135
NRCS (SCS) rainfall-runoff, 135
rational formula, 135
hyperbola, 3
hypothesis testing, 18, 198

Ideal Gas Law, 56
ideal gas mixtures, 58
impact test, 83
impeller mixer, 165
implicant, 188
important families of organic compounds, 80
impulse response, 175
impulse turbine, 49
impulse-momentum principle, 48
incineration, 147
incomplete combustion, 59
increase of entropy principle, 60
indicated power, 212
indicated thermal efficiency, 212
induced voltage, 167
industrial chemical, 102
inequality of Clausius, 60
infiltration, 218
inflation, 92
influence lines, 114
integral calculus, 8
interaction effects, 193
interest factor tables, 94-98
intermediate- and long-length columns, 204
internal combustion engines, 212
inventory models, 193
inverse, 6
inverse transform method, 191
iron-iron carbide phase diagram, 59
irreversibility, 60
isentropic process, 60
isothermal, reversible process, 60
jet propulsion, 48
JFETs, 182, 184
job sequencing, 195
junction, 214

## K

Karnaugh map (K-Map), 188
Kelvin-Planck statement of second law, 60
Kendall notation, 190
ketones, 101
Kirchhoff's laws, 168
L
laminar flow, 69
landfill, 150
landfill cover, 150
Langmuir isotherm, 161
Laplace transforms, 174
latitudes and departures, 139
laws of probability, 15
$L C_{50}, 158$
$L D_{50}, 158$
Le Chatelier's principle for chemical equilibrium, 78
learning curves, 193
least squares, 17, 192
length:width ration, 163
Lever rule, 59
L'Hospital's rule (L'Hôpital's rule), 8
licensee's obligation to employer and clients, 100
licensee's obligation to other licensees, 100
licensee's obligation to society, 99
lime-soda softening, 164
line balancing, 195
line source attenuation, 150
linear programming, 189
linear projection, 150
linear regression, 17, 192
liquid metals, 69
load combinations, steel, 121
loading on straight spur gears, 207
$\log$ growth, 150
log mean temperature difference
concurrent flow in tubular heat exchangers, 68
countercurrent flow in tubular heat exchangers, 68
logarithms, 4
logic gates, 187
logic operations and boolean algebra, 187
lossless transmission lines, 172
LRFD, steel design, 121

## M

magnetic fields, 167
Manning's equation, 49, 137
manometers, 50
mass
fraction, 58
mass balance for secondary clarifier, 159
mass transfer in dilute solutions, 73
mass transfer, 73, 105
material handling, 195
material properties, 42
matrices, 6
maximum normal-stress theory, 40
maximum shear-stress theory, 40
maxterm, 188
maxterm list, 188
mean effective pressure (mep), 213
measurement uncertainty, 88
mechanical
efficiency, 212
springs, 203
Mechanisms, 77
mensuration of areas and volumes, 10,11
metallic elements, 78
microbial kinetics, 148
minor losses in pipe fittings, contractions, and expansions, 47
minterm, 188
minterm list, 188
miscellaneous effects factor, $\mathrm{k}_{\mathrm{c}}, 41$
Model Rules, 99
modified ACRS factors, 93
modified Goodman theory, 40
molar volume, 78
molarity
solutions, 78
mole fraction of a substance, 78
molecular diffusion, 105
moment
capacity, steel beams, 122
inertia transfer theorem, 25
moment of inertia, 24
moments (couples), 24
momentum transfer, 73
momentum, heat and mass transfer analogy, 73
monod kinetics, 148
Moody (Stanton) diagram, 54
MOSFETs, 182, 184, 186
moving average, 191
moving blade, 49
multipath pipeline problems, 49
multiple server model ( $\mathrm{s}>1$ ), 191
multiple substrated limiting, 148
multiplication, 6
Murphree plate efficiency, 106
N
natural (free) convection, 71
NCEES Model Rules, 99
N-channel junction field effect transistors (JFET's), 184
Newton's method for root extraction, 13
Newton's method of minimization, 13
NIOSH formula, 194
nitrogen balance, 76
NOAEL, 155
noise pollution, 150
nomenclature, 10,56
nomenclature and definitions, 92
non-annual compounding, 92
noncarcinogenic dose-response curve, 155
non-metallic elements, 78
normal depth, 137
normal distribution, 16
normality of solutions, 78
nozzles, diffusers, 57
NPN bipolar junction transistor (BJT), 183
NRCS (SCS) rainfall-runoff, 135
number of atoms in a cell, 82
number systems and codes, 187
numerical integration, 14
numerical methods, 13
numerical solution of ordinary differential equations, 14

## 0

octanol-water partition coefficient, 149
one-dimensional flows, 45
One-Way Analysis of Variance (anova), 192
open thermodynamic system, 57
open-channel flow and/or pipe flow, 49, 136
open-system availability, 60
operating lines, 106
operational amplifiers, 182
organic carbon partition coefficient $K_{o c}, 149$
orifice
discharge freely into atmosphere, 51
submerged, 51
orifices, 50
osmotic pressure of solutions of electrolytes, 165
Otto Cycle, 212
overall coefficients, 105
overall heat-transfer coefficient, 68
overburden pressure, 150
overdamped, 89
overflow rate, 162
oxidation, 78
oxidation potentials, 81
oxidizing agent, 78

## P

packing factor, 82
parabola, 3, 10
paraboloid of revolution, 11
parallel
resonance, 170
parallelogram, 11
partial
derivative, 8
pressures, 58
volumes, 58
people requirements, 195
periodic table of elements, 79
permutations and combinations, 15
pert, 196
$P-h$ diagram for refrigerant HFC-134a, 64
pH of aqueous solutions, 78
phase margin, 88
phase relations, 58
phasor transforms of sinusoids, 169
PID controller, 89
pipe bends, enlargements, and contractions, 48
pitot tube, 50
plane truss, 25
method of joints, 25
method of sections, 25
plant location, 195
plug-flow reactor (PFR), 105
point source attenuation, 150
polar coordinates, 5
polymer additives, 86
polymers, 86
population modeling, 150
Portland cement concrete, 85
possible cathode reactions (reduction), 82
power in a resistive element, 168
power law fluid, 44, 47
Prandlt number, 69
Prandtl number, 73
press/shrink fits, 206
pressure field in a static liquid, 44
primary bonds, 82
primary clarifier efficiency, 162
prime implicant, 188
principal stresses, 39
prismoid, 11, 142
probability and density functions
means and variances, 197
probability and statistics, 15
probability functions, 16
product of inertia, 25
progressions and series, 7
properties of series, 7
properties of single-component systems, 56
properties of water, 53
psychrometric chart, 58, 65
psychrometrics, 58
pump, 214
pump characteristics, 211
pump power equation, 48

## $Q$

quadratic equation, 3
quadric surface (sphere), 4
queueing models, 190

## R

radiation, 68,71
radiation half-life, 85
radiation shields, 71
radius of curvature, 8
radius of gyration, 25
rainfall-runoff, 135
random variate generation, 191
randomized block design, 192
Raoult's law for vapor-liquid equilibrium, 60
rapid mix, 164
rate constants, 104, 160, 162
rate of heat transfer in a tubular heat exchanger, 69
rate of transfer
function of gradients at the wall, 73
in terms of coefficients, 73
rate-of-return, 93
rational formula, 135
Rayleigh equation for batch distillation, 71, 106
RC and RL transients, 170
reaction order, 104
reactive systems, 103
reactors, 105
recommended weight limit (U.S. Customary Units), 194
rectifying section, 106
reducing agent, 78
reduction, 78
reel and paddle, 164
reference dose, 155
reflux ratio, 106
refrigeration and HVAC, 217
refrigeration cycles, 58
regular polygon ( $n$ equal sides), 11
reinforced concrete design, 115
relative volatility, 106
reliability, 193
required power, 163
reradiating surface, 72
residential exposure equations, 156
resistivity, 167
resistors in series and parallel, 168
resolution of a force, 24
resonance, 170
resultant, 24
retardation factor $R, 149$
reverse osmosis, 165
Reynolds number, 47, 163, 165
right circular cone, 11
right circular cylinder, 11
risk, 155
RMS, 169
roots, 5
Rose equation, 163
Routh test, 89
rules of professional conduct, 99

## S

safe human dose, 155
salt flux through the membrane, 165
sample, 17, 192
saturated water - temperature table, 62
Scaling laws, 211
Schmidt number, 73
screw thread, 25
SCS (NRCS) rainfall-runoff, 135
Second Law of Thermodynamics, 60
second-order control-system models, 89
second-order linear difference equation, 13, 174
second-order linear nonhomogeneous differential equations
with constant coefficients, 12
second-order reaction, 104
selected rules of nomenclature in organic chemistry, 101
series resonance, 170
settling equations, 165
shafts and axles, 204
shape factor relations, 72
shear design
steel, 123
shear stress-strain, 38
shearing force and bending moment sign conventions, 41
Sherwood number, 73, 105
similitude, 52
simple planetary gearset, 207
Simpson's rule, 14
Simpson's Rule, 142
simulation, 191
sine-cosine relations, 169
single server models ( $s=1$ ), 190
size factor, $\mathrm{k}_{\mathrm{b}}, 41$
sludge age, 160
Soderberg theory, 40
soil landfill cover water balance, 150
soil-water partition coefficient, 149
solids residence time, 159
solid-state electronics and devices, 182
solubility product constant, 78
source equivalents, 168
special cases of closed systems, 57
special cases of open systems, 57
special cases of steady-flow energy equation, 57
specific energy, 136
specific energy diagram, 137
specific fuel consumption (sfc), 213
sphere, 10
spring material, 203, 204
square thread power screws, 203
standard deviation charts, 190
standard error of estimate, 17, 192
standard oxidation potentials for corrosion reactions, 81
standard tensile test, 83
standard time determination, 195

Stanton number, 73
state functions (properties), 56
state-variable control-system models, 90
static loading, 204
static loading failure theories, 40
statically determinate truss, 25
statistical quality control, 189
steady conduction with internal energy generation, 70
steady, incompressible flow in conduits and pipes, 47
steady-state error $e_{s s}(t), 88$
steady-state mass balance for aeration basin, 159
steady-state systems, 57
steam power plants, 213
steam trap, 214
steel structures (ASD, LRFD), 121
Stokes' law, 166
straight line, 3, 93
stream modeling, 148
Streeter Phelps, 148
stress and strain, 39
stress concentration in brittle materials, 83
stress, pressure, and viscosity, 44
stresses in beams, 41
stresses in spur gears, 208
stress-strain curve for mild steel, 38
stripper packing height $=Z, 161$
stripping section, 106
structural analysis, 114
Student's $t$-Distribution Table, 21
subscripts, 92
sum of squares of random error, 193
superheated water tables, 63
surface factor, $\mathrm{k}_{\mathrm{a}}, 41$
surface tension and capillarity, 44
SVI, 159
sweep-through concentration change in a vessel, 110
switching function terminology, 188
systems of forces, 24

## T

tabulated characteristics, 182
tank volume, 160
Taylor Tool life formula, 196
Taylor's series, 8
$t$-Distribution, 17
$t$-distribution table, 21
temperature factor, $\mathrm{k}_{\mathrm{d}}, 41$
temperature-entropy (T-s) diagram, 60
tension members, steel, 121
test
for a point of inflection, 8
for maximum, 8
for minimum, 8
testing methods, 83
tests for out of control, 190
thermal conductivity, 68
thermal deformations, 38
thermal energy reservoirs, 60
thermal processing, 82
thermo-mechanical properties of polymers, 86
threaded fasteners, 205
design factors, 205
fatigue loading, 205
Threshold Limit Value (TLV), 109
throttling valves \& throttling processes, 57
to evaluate surface or intermediate temperatures, 67
torsion, 41
torsional strain, 41
total material balance, 106
traffic flow relationships $(q=k v), 138$
transfer across membrane barriers, 77
transformers, 171
transient conduction using the lumped capacitance method, 70
transportation, 137
transportation models, 138
transpose, 6
trapezoidal rule, 14, 142
trigonometry, 5
turbines, pumps, compressors, 57
turbulent flow, 69
turbulent flow impeller, 165
turbulent flow in circular tubes, 73
turns ratio, 171
two work centers, 195
two-body problem, 71
two-film theory (for equimolar counter-diffusion), 105
two-stage cycle, 217
two-way ANOVA table, 196
type of spring ends, 203
typical primary clarifier efficiency percent removal, 162

## $\mathbf{U}$

U.S. civilian body dimensions, female/male, for ages 20 to 60 years, 200
ultrafiltration, 166
underdamped, 89
uniaxial loading and deformation, 38
uniaxial stress-strain, 38
unidirectional diffusion of a gas through a second stagnant gas b, 105
unit normal distribution table, 20
units, 167
universal gas constant, 56, 161, 165

## V

values of $t_{\alpha, n}, 21$
Van Laar equation, 103
vapor-liquid equilibrium, 103
vapor-liquid mixtures, 60
vectors, 6
velocity gradient, 164
velocity ratio, 207
venturi meters, 50
vertical curve formulas, 140
viscosity, 44
voltage, 163, 167
volumetric efficiency, 213

## W

wastewater treatment technologies, 159
Weber number, 52
Weir formulas, 137
Weir loadings, 163
work sampling formulas, 196
Z
zero-order reaction, 104
$z$-transforms, 174

## SCHOOL/INSTITUTION CODES

For Use on FE Morning Answer Sheet

| State | Code | School |
| :---: | :---: | :---: |
| Alabama | University of Alabama |  |
|  | 2101 | Birmingham |
|  | 2102 | Huntsville |
|  | 2103 | Tuscaloosa |
|  | Alabama A and M University |  |
|  | $\begin{aligned} & 2104 \\ & 2105 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 2106 | Auburn University |
|  | 2107 | South Alabama, University of |
|  | 2108 | Tuskegee University |
| Alaska | University of Alaska |  |
|  | $\begin{aligned} & 6001 \\ & 6002 \end{aligned}$ | Anchorage |
| Arizona | Arizona State University |  |
|  | $\begin{aligned} & 2201 \\ & 2202 \end{aligned}$ | East (Engineering Technology) (Engineering) |
|  | 2203 | Arizona, University of |
|  | 2204 | Devry Institute of Technology - Phoenix |
|  | 2205 | Embry-Riddle Aeronautical University - Prescott |
|  | 2206 | Northern Arizona University |
| Arkansas | University of Arkansas |  |
|  | 4601 | Fayetteville |
|  | 4602 | Little Rock (Engineering Technology) |
|  | 4606 | Little Rock (Engineering) |
|  | 4603 | Arkansas State University |
|  | 4604 | Arkansas Tech University |
|  | 4605 | John Brown University |
| California | University of California |  |
|  | 5701 | Berkeley |
|  | 5702 | Davis |
|  | 5703 | Irvine |
|  | 5704 | Los Angeles |
|  | 5705 | Riverside |
|  | 5706 | San Diego |
|  | 5707 | Santa Barbara |
|  | 5708 | Santa Cruz |
|  | 5709 | California Institute of Technology |
|  | California Maritime Academy |  |
|  | $\begin{aligned} & 5710 \\ & 5738 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 5711 | California Polytechnic State University San Luis Obispo |
|  | California State Polytechnic University - Pomona |  |
|  | $\begin{aligned} & 5712 \\ & 5713 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | California State University |  |
|  | 5714 | Chico |
|  | 5715 | Fresno |
|  | 5716 | Fullerton |
|  | 5717 | Long Beach (Engineering Technology) |
|  | 5718 | Long Beach (Engineering) |
|  | 5719 | Los Angeles |
|  | 5720 | Northridge |
|  | 5721 | Sacramento (Engineering Technology) |
|  | 5722 | Sacramento (Engineering) |
|  | 5738 | Hayward |
|  | Devry Institute of Technology |  |
|  | 5723 | Fremont |
|  | 5724 | Long Beach California |
|  | 5725 | Pomona |
|  | 5739 | West Hills |
|  | 5726 | Harvey Mudd College |
|  | 5727 | Humboldt State University |
|  | 5728 | Loyola Marymount University (California) |
|  | 5729 | Naval Postgraduate School |
|  | 5730 | Pacific, University of the |
|  | 5731 | San Diego State University |
|  | 5732 | San Diego, University of |


| State | Code | School |
| :---: | :---: | :---: |
| California (cont.) | 5733 | San Francisco State University |
|  | 5734 | San Jose State University |
|  | 5735 | Santa Clara University |
|  | 5736 | Southern California, University of |
|  | 5737 | Stanford University |
| Colorado | University of Colorado |  |
|  | 6801 | Boulder |
|  | 6802 | Colorado Springs |
|  | 6803 | Denver |
|  | 6804 | Colorado School of Mines |
|  | Colorado State University |  |
|  | 6805 | Fort Collins |
|  | 6813 | Pueblo (Engineering Technology) |
|  | 6814 | Pueblo (Engineering) |
|  | Colorado Technical University |  |
|  | $\begin{aligned} & 6806 \\ & 6807 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 6808 | Denver, University of |
|  | 6809 | Metropolitan State College of Denver |
|  | University of Southern Colorado |  |
|  | 6810 | (Engineering Technology) |
|  | 6811 | (Engineering) |
|  | 6812 | US Air Force Academy |
| Connecticut | $\begin{aligned} & 6901 \\ & 6902 \\ & 6903 \\ & 6904 \\ & \hline \end{aligned}$ | Bridgeport, University of Central Connecticut State University Connecticut, University of Fairfield University |
|  | University of Hartford |  |
|  | $\begin{aligned} & \hline 6905 \\ & 6906 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 6907 | New Haven, University of |
|  | 6908 | Trinity College - Connecticut |
|  | 6909 | US Coast Guard Academy |
|  | 6910 | Yale University |
| Delaware | University of Delaware |  |
|  | 2301 | (Engineering Technology) |
|  | 2302 | (Engineering) |
| District of Columbia | 2401 | Catholic University of America |
|  | University of District of Columbia - Van Ness Campus |  |
|  | $\begin{aligned} & 2402 \\ & 2403 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 2404 | George Washington University |
|  | 2405 | Howard University |
| Florida | University of Central Florida |  |
|  | $\begin{aligned} & 5101 \\ & 5102 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | Embry-Riddle Aeronautical University Daytona Beach |  |
|  | $\begin{aligned} & 5103 \\ & 5104 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 5105 | Florida A \& M University (Engineering |
|  | 5106 | Florida A \& M / Florida State University (Engineering) |
|  | 5107 | Florida Atlantic University |
|  | 5108 | Florida Institute of Technology |
|  | 5109 | Florida International University |
|  | 5110 | Florida, University of |
|  | 5111 | Miami, University of |
|  | 5112 | North Florida, University of |
|  | 5113 | South Florida, University of |
| Georgia | 2501 | Devry Institute of Technology - Decatur |
|  | 2502 | Fort Valley State University |
|  | 2503 | Georgia Institute of Technology |
|  | 2504 | Georgia Southern University |
|  | 2505 | Georgia, University of |
|  | 2506 | Mercer University |
|  | 2507 | Savannah State University |
|  | 2508 | Southern Polytechnic State University |

## SCHOOL/INSTITUTION CODES

For Use on FE Morning Answer Sheet

| State | Code | School |
| :---: | :---: | :---: |
| Hawaii | 2601 | Hawaii - Manoa, University of |
| Idaho | $\begin{aligned} & 6101 \\ & 6102 \\ & 6103 \\ & \hline \end{aligned}$ | Boise State University Idaho State University Idaho, University of |
| Illinois | Bradley University |  |
|  | $\begin{aligned} & 7001 \\ & 7002 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | Devry Institute of Technology |  |
|  | $\begin{aligned} & 7003 \\ & 7004 \end{aligned}$ | Chicago DuPage |
|  | University of Illinois |  |
|  | $\begin{aligned} & 7005 \\ & 7006 \end{aligned}$ | Chicago <br> Urbana Champaign |
|  | $\begin{aligned} & 7007 \\ & 7008 \\ & 7009 \\ & 7010 \end{aligned}$ | Illinois Institute of Technology Northern Illinois University Northwestern University Olivet Nazarene University |
|  | Southern Illinois University |  |
|  | $\begin{aligned} & 7011 \\ & 7012 \\ & 7013 \end{aligned}$ | Carbondale (Engineering Technology) <br> Carbondale (Engineering) <br> Edwardsville |
| Indiana | $\begin{aligned} & 6501 \\ & 6502 \\ & 6503 \end{aligned}$ | Ball State University Evansville, University of Indiana Institute of Technology |
|  | Indiana University/Purdue University |  |
|  | $\begin{aligned} & \hline 6504 \\ & 6505 \\ & 6506 \\ & 6507 \\ & \hline \end{aligned}$ | Fort Wayne (Engineering Technology) <br> Fort Wayne (Engineering) <br> Indianapolis (Engineering Technology) <br> Indianapolis (Engineering) |
|  | 6508 | Notre Dame, University of |
|  | Purdue University |  |
|  | 6509 <br> 6510 <br> 6511 <br> 6512 <br> 6513 <br> 6514 | Calumet (Engineering Technology) <br> Calumet (Engineering) <br> Kokomo <br> North Central <br> West Lafayette (Engineering Technology) <br> West Lafayette (Engineering) |
|  | $\begin{aligned} & 6515 \\ & 6516 \\ & 6517 \\ & 6518 \end{aligned}$ | Rose Hulman Institute of Technology Southern Indiana, University of Tri-State University Valparaiso University |
| Iowa | $\begin{aligned} & \hline 5201 \\ & 5202 \\ & 5203 \\ & 5204 \\ & \hline \end{aligned}$ | Dordt College Iowa State University Iowa, University of St. Ambrose College |
| Kansas | $\begin{aligned} & 5301 \\ & 5302 \\ & \\ & 5303 \\ & 5304 \\ & 5305 \\ & \hline \end{aligned}$ | Kansas State University <br> Kansas State University - Salina, College <br> of Technology \& Aviation <br> (Engineering Technology) <br> Kansas, University of <br> Pittsburgh State University <br> Wichita State University |
| Kentucky | University of Kentucky |  |
|  | $\begin{aligned} & 7101 \\ & 7107 \end{aligned}$ | Lexington Paducah |
|  | 7102 | Louisville, University of |
|  | Murray State University |  |
|  | $\begin{aligned} & 7103 \\ & 7104 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & 7105 \\ & 7106 \end{aligned}$ | Northern Kentucky University Western Kentucky University |
| Louisiana | $\begin{aligned} & \hline 5410 \\ & 5401 \\ & 5402 \\ & \hline \end{aligned}$ | Grambling State University Louisiana at Lafayette, University of Louisiana State University |
|  | Louisiana Tech University |  |
|  | $\begin{aligned} & 5403 \\ & 5404 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | McNeese State University |  |
|  | $\begin{aligned} & 5411 \\ & 5405 \\ & \hline \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | $\begin{aligned} & 5406 \\ & 5407 \end{aligned}$ | New Orleans, University of Northwestern State University of Louisiana |


| State | Code | School |
| :---: | :---: | :---: |
| Louisiana (cont.) | Southern University and A \& M College |  |
|  | 5408 | (Engineering) |
|  | 5412 | (Engineering Technology) |
|  | 5409 | Tulane University |
| Maine | University of Maine - Orono |  |
|  | $\begin{aligned} & 2701 \\ & 2702 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | Maine Maritime Academy - Castine |  |
|  | $\begin{aligned} & 2703 \\ & 2704 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 2705 | Southern Maine, University of |
| Maryland | Capital College - Maryland |  |
|  | $\begin{aligned} & 4501 \\ & 4502 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 4503 | Johns Hopkins University |
|  | 4504 | Loyola College in Maryland |
|  | University of Maryland |  |
|  | $4505$ | Baltimore County |
|  | 4507 | Morgan State University |
|  | 4508 | US Naval Academy |
| Massachusetts | 2801 | Boston University |
|  | 2802 | Harvard University |
|  | University of Massachusetts |  |
|  | 2803 | Amherst |
|  | 2804 | Dartmouth |
|  | 2805 | Lowell, (Engineering Technology) |
|  | 2806 | Lowell, (Engineering) |
|  | $\begin{aligned} & 2807 \\ & 2808 \end{aligned}$ | Massachusetts Institute of Technology Merrimack College |
|  | Northeastern University |  |
|  | 2809 | (Engineering Technology) |
|  | 2810 | (Engineering) |
|  | 2811 | Tufts University |
|  | Wentworth Institute of Technology |  |
|  | $\begin{aligned} & \hline 2812 \\ & 2813 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 2814 | Western New England College |
|  | 2815 | Worcester Polytechnic Institute |
| Michigan | 7222 | Baker College |
|  | 7201 | Calvin College |
|  | 7202 | Detroit Mercy, University of |
|  | Ferris State University |  |
|  | $\begin{aligned} & 7203 \\ & 7204 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 7205 | Grand Valley State University |
|  | 7206 | Hope College |
|  | 7207 | Kettering University |
|  | Lake Superior State University |  |
|  | $\begin{aligned} & 7208 \\ & 7209 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 7210 | Lawrence Technological University |
|  | University of Michigan |  |
|  | 7211 | Ann Arbor |
|  | 7212 | Dearborn |
|  | 7213 | Michigan State University |
|  | Michigan Technological University |  |
|  | $\begin{aligned} & \hline 7214 \\ & 7215 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 7216 | Oakland University |
|  | 7217 | Saginaw Valley State University |
|  | Wayne State University |  |
|  | 7218 | (Engineering Technology) |
|  | Western Michigan University |  |
|  | $\begin{aligned} & 7220 \\ & 7221 \\ & \hline \end{aligned}$ | (Engineering Technology) (Engineering) |

## SCHOOL/INSTITUTION CODES

For Use on FE Morning Answer Sheet

| State | Code | School |
| :---: | :---: | :---: |
| Minnesota | University of Minnesota |  |
|  | $\begin{aligned} & 5801 \\ & 5802 \end{aligned}$ | Duluth Twin Cities |
|  | Minnesota State University - Mankato |  |
|  | $\begin{aligned} & 5803 \\ & 5804 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | 5805 | St. Cloud State University |
|  | 5806 | St. Thomas, University of |
|  | 5807 | Winona State University |
| Mississippi | 2901 | Mississippi State University |
|  | 2902 | Mississippi, University of |
|  | 2903 | Southern Mississippi, University of |
| Missouri | 3001 | Devry Institute of Technology - Kansas City |
|  | University of Missouri |  |
|  | 3002 | Columbia |
|  | 3003 | Kansas City |
|  | 3004 | Rolla |
|  | 3005 | St. Louis |
|  | 3006 | Missouri Western State College |
|  | 3007 | Parks College of Engineering and Aviation, St Louis University |
|  | 3008 | Southeast Missouri State University |
|  | 3009 | Washington University - St. Louis, MO |
| Montana | 3101 | Carroll College |
|  | Montana State University - Bozeman |  |
|  | 3102 | (Engineering Technology) |
|  | 3103 | (Engineering) |
|  | 3104 | Montana State University - Northern |
|  | 3105 | Montana Tech of the University of |
| Nebraska | University of Nebraska |  |
|  | 6301 | Lincoln |
|  | 6302 | Lincoln at Omaha (Engineering Technology) |
|  | 6303 | Lincoln at Omaha (Engineering) |
| Nevada | University of Nevada |  |
|  | 3201 | Las Vegas |
|  | 3202 | Reno |
| $\begin{array}{\|\|l\|} \hline \text { New } \\ \text { Hampshire } \end{array}$ | 3301 | Dartmouth College |
|  | University of New Hampshire |  |
|  | $\begin{aligned} & 3302 \\ & 3303 \end{aligned}$ | (Engineering Technology) (Engineering) |
| New Jersey | 7301 | Devry Institute of Technology - North Brunswick |
|  | Fairleigh Dickinson University - Teaneck |  |
|  | 7302 | (Engineering Technology) |
|  | New Jersey Institute of Technology |  |
|  |  |  |
|  | $\begin{aligned} & \hline 7304 \\ & 7305 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 7306 | New Jersey, College of |
|  | 7307 | Princeton University |
|  | 7308 | Rowan University |
|  | 7309 | Rutgers University |
|  | 7310 | Stevens Institute of Technology |
| New Mexico | 4901 | New Mexico Institute of Mining and Technology |
|  | New Mexico State University |  |
|  | 4902 | (Engineering Technology) |
|  | 4903 | (Engineering) |
|  | 4904 | New Mexico, University of |
| New York | 6736 | Aeronautics, College of |
|  | 6701 | Alfred University |
|  | 6702 | Clarkson University |
|  | 6703 | Columbia University |
|  | 6704 | Cooper Union |
|  | 6705 | Cornell University |
|  | 6706 | CUNY, City College |
|  | 6707 | CUNY, College of Staten Island |
|  | 6708 | Devry Institute of Technology - Long Island City |
|  | 6709 | Excelsior College |


| State | Code | School |
| :---: | :---: | :---: |
| New York (Cont'd) | $\begin{aligned} & \hline 6710 \\ & 6711 \\ & 6712 \\ & \hline \end{aligned}$ | Hofstra University Manhattan College New York City Technical College |
|  | New York Institute of Technology |  |
|  | $\begin{aligned} & 6713 \\ & 6714 \\ & 6715 \\ & \hline \end{aligned}$ | Manhattan Center <br> Old Westbury (Engineering Technology) <br> Old Westbury (Engineering) |
|  | $\begin{aligned} & 6716 \\ & 6717 \end{aligned}$ | Polytechnic University Brooklyn, NY Rensselaer Polytechnic Institute |
|  | Rochester Institute of Tech |  |
|  | $\begin{aligned} & 6718 \\ & 6719 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 6720 | Rochester, University of |
|  | SUNY |  |
|  | $\begin{aligned} & \hline 6721 \\ & 6722 \\ & 6723 \\ & 6724 \\ & 6725 \\ & \\ & 6726 \\ & 6727 \\ & 6728 \\ & 6729 \\ & 6730 \\ & \hline \end{aligned}$ | Alfred (Alfred State College) <br> Binghamton <br> Buffalo (Engineering Technology) <br> Buffalo (Engineering) <br>  <br> Forestry <br> Farmingdale <br> Institute of Technology at Utica/Rome <br> New Paltz <br> Stony Brook <br> Maritime College |
|  | 6731 6732 6733 6734 6735 | Syracuse University <br> Union College <br> US Merchant Marine Academy <br> US Military Academy <br> Webb Institute |
| North Carolina | 5901 | Duke University |
|  | University of North Carolina |  |
|  | $\begin{aligned} & \hline 5902 \\ & 5903 \\ & 5904 \\ & \hline \end{aligned}$ | Chapel Hill <br> Charlotte (Engineering Technology) <br> Charlotte (Engineering) |
|  | $\begin{aligned} & \hline 5905 \\ & 5906 \\ & 5907 \\ & \hline \end{aligned}$ | North Carolina A and T University North Carolina State University Western Carolina University |
| North Dakota | $\begin{aligned} & 4201 \\ & 4202 \end{aligned}$ | North Dakota State University North Dakota, University of |
| Ohio | 6401 <br> 6402 <br> 6403 <br> 6404 <br> 6405 <br> 6406 <br> 6407 <br> 6408 | Air Force Institute of Technology Akron, Community and Technical College Akron, University of Case Western Reserve University Cedarville University Central State University Cincinnati - OMI College of Applied Science, University of (Engineering Technology) Cincinnati, University of (Engineering) |
|  | Cleveland State University |  |
|  | $\begin{aligned} & \hline 6409 \\ & 6410 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | University of Dayton |  |
|  | $\begin{aligned} & 6411 \\ & 6412 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & \hline 6413 \\ & 6414 \\ & 6415 \\ & 6416 \\ & 6417 \\ & 6418 \\ & \hline \end{aligned}$ | Devry Institute of Technology - Columbus Marietta College <br> Miami (OH) University <br> Ohio Northern University <br> Ohio State University <br> Ohio University |
|  | University of Toledo |  |
|  | $\begin{aligned} & \hline 6419 \\ & 6420 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | 6421 | Wright State University |

For Use on FE Morning Answer Sheet

| State | Code | School |
| :---: | :---: | :---: |
| Ohio (Cont'd) | Youngstown State University |  |
|  | $\begin{aligned} & 6422 \\ & 6423 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
| Oklahoma | 5501 | Oklahoma Christian University of Science and Arts |
|  | Oklahoma State University |  |
|  | $\begin{array}{r} 5502 \\ 5503 \\ \hline \end{array}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & 5504 \\ & 5505 \\ & 5506 \\ & 5507 \end{aligned}$ | Oklahoma, University of Oral Roberts University Southwestern Oklahoma State University Tulsa, University of |
| Oregon | Oregon Institute of Technology |  |
|  | $\begin{aligned} & 3401 \\ & 3402 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & \hline 3403 \\ & 3404 \\ & 3405 \\ & \hline \end{aligned}$ | Oregon State University Portland State University Portland, University of |
| Pennsylvania | $\begin{aligned} & 3501 \\ & 3534 \\ & 3502 \\ & 3503 \\ & 3504 \\ & 3505 \\ & 3506 \\ & 3507 \\ & 3508 \\ & 3509 \end{aligned}$ | Bucknell University <br> California University of Pennsylvania <br> Carnegie-Mellon University <br> Drexel University <br> Gannon University <br> Geneva College <br> Grove City College <br> Lafayette College <br> Lehigh University <br> Messiah College |
|  | Penn State University |  |
|  | $\begin{aligned} & 3510 \\ & 3511 \\ & 3512 \\ & 3513 \\ & 3514 \\ & 3515 \\ & \\ & 3531 \\ & \\ & 3516 \\ & 3532 \\ & 3517 \end{aligned}$ | Altoona Campus <br> Behrend College (Engineering Technology) <br> Behrend College (Engineering) <br> Berks Campus, Berks-Lehigh Valley College <br> Capitol Campus <br> Harrisburg, The Capital College (Engineering <br> Technology) <br> Harrisburg, The Capital College <br> (Engineering) <br> Main Campus <br> New Kensington Campus <br> Wilkes-Barre Campus Commonwealth <br> College |
|  | $\begin{aligned} & 3518 \\ & 3519 \\ & 3520 \\ & 3521 \\ & 3522 \\ & 3523 \\ & 3533 \\ & 3524 \end{aligned}$ | Pennsylvania College of Technology <br> Pennsylvania, University of <br> Philadelphia University <br> Pittsburgh - Johnstown, University of <br> Pittsburgh, University of <br> Point Park College <br> Robert Morris University <br> Swarthmore College |
|  | Temple University |  |
|  | $\begin{aligned} & 3525 \\ & 3526 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & 3527 \\ & 3528 \\ & 3529 \\ & 3530 \end{aligned}$ | Villanova University <br> Widener University <br> Wilkes University <br> York College of Pennsylvania |
| Puerto Rico | $\begin{aligned} & 6201 \\ & 6202 \\ & \hline \end{aligned}$ | Polytechnic University of Puerto Rico University of Puerto Rico, Mayaguez |
| Rhode Island | $\begin{aligned} & 5001 \\ & 5002 \\ & 5003 \\ & 5004 \end{aligned}$ | Brown University <br> New England Institute of Technology <br> Rhode Island, University of <br> Roger Williams University |
| South Carolina | $\begin{aligned} & 3601 \\ & 3602 \\ & 3603 \\ & 3604 \end{aligned}$ | Citadel <br> Clemson University <br> South Carolina State University <br> South Carolina, University of |
| South Dakota | $\begin{aligned} & 3701 \\ & 3702 \\ & \hline \end{aligned}$ | South Dakota School of Mines and Technology <br> South Dakota State University |


| State | Code | School |
| :---: | :---: | :---: |
| Tennessee | 3801 | Christian Brothers University |
|  | 3802 | East Tennessee State University |
|  | 3812 | Lipscomb University |
|  | University of Memphis |  |
|  | 3803 | (Engineering Technology) |
|  | 3804 | (Engineering) |
|  | 3805 | Middle Tennessee State University |
|  | University of Tennessee |  |
|  | 3806 | Chattanooga |
|  | 3807 | Knoxville |
|  | 3808 | Martin |
|  | 3809 | Tennessee State University |
|  | 3810 | Tennessee Technological University |
|  | 3811 | Vanderbilt University |
| Texas | 3901 |  |
|  | 3902 | Devry Institute of Technology - Irving |
|  | University of Houston |  |
|  | 3903 | Clear Lake (Engineering) |
|  | 3904 | College of Technology (Engineering Technology) |
|  | 3905 | Downtown (Engineering Technology) |
|  | 3906 | Houston (Engineering) |
|  | 3907 | Lamar University |
|  | LeTourneau University |  |
|  | $\begin{aligned} & 3908 \\ & 3000 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | $\frac{3909}{3910}$ |  |
|  | $3911$ | Nid Texas University of |
|  | Prairie View A and M University |  |
|  | $\begin{aligned} & 3912 \\ & 3913 \end{aligned}$ | (Engineering Technology) (Engineering) |
|  | $\frac{3913}{3914}$ |  |
|  | $3915$ | Southern Methodist University |
|  | 3916 | St. Mary's University |
|  | University of Texas |  |
|  | 3917 | Arlington |
|  | 3918 | Austin |
|  | 3919 | Dallas |
|  | 3920 | El Paso |
|  | 3921 | Pan American |
|  | 3922 | San Antonio |
|  | 3932 | Tyler |
|  | Texas A and M University - College Station |  |
|  | $3923$ | (Engineering Technology) |
|  | 3924 | (Engineering) |
|  | Texas A and M University |  |
|  | 3933 | Corpus Christi |
|  | 3925 | Galveston |
|  | 3926 | Kingsville |
|  | 3927 | Texas Christian University |
|  | 3928 | Texas Southern University |
|  | Texas Tech University |  |
|  | 3929 | (Engineering Technology) |
|  | 3930 | (Engineering) |
|  | 3931 | Trinity University - Texas |
| Utah | Brigham Young University |  |
|  | 4001 | (Engineering Technology) |
|  | 4002 | (Engineering) |
|  | 4003 | Utah State University |
|  | 4004 | Utah, University of |
|  | 4005 | Weber State University |
| Vermont | 4301 | Norwich University |
|  | 4302 | Vermont Technical College |
|  | 4303 | Vermont, University of |
| Virginia | 4101 | Christopher Newport University |
|  | 4102 | George Mason University |
|  | 4103 | Hampton University |
|  | Old Dominion University |  |
|  | $\begin{aligned} & 4104 \\ & 4105 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |

## SCHOOL/INSTITUTION CODES

For Use on FE Morning Answer Sheet

| State | Code | School |
| :---: | :---: | :---: |
| Virginia (Cont'd) | $\begin{aligned} & 4106 \\ & 4107 \\ & 4108 \\ & 4109 \\ & 4110 \end{aligned}$ | Virginia Commonwealth University <br> Virginia Military Institute <br> Virginia Polytechnic Institute <br> Virginia State University <br> Virginia, University of |
| Washington | $\begin{aligned} & \hline 5601 \\ & 5602 \\ & 5603 \\ & \hline \end{aligned}$ | Central Washington University Eastern Washington University Gonzaga University |
|  | Henry Cogswell College |  |
|  | $\begin{aligned} & \hline 5604 \\ & 5605 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | $\begin{aligned} & \hline 5606 \\ & 5607 \\ & 5608 \\ & 5609 \\ & 5610 \\ & 5611 \\ & 5612 \end{aligned}$ | Seattle Pacific University <br> Seattle University <br> St. Martin's College <br> Walla Walla College <br> Washington State University <br> Washington, University of <br> Western Washington University |
| West Virginia | $\begin{aligned} & \hline 4401 \\ & 4402 \\ & 4403 \\ & \hline \end{aligned}$ | Bluefield State College Fairmont State College West Virginia University |
|  | West Virginia University Institute of Technology |  |
|  | $\begin{aligned} & 4404 \\ & 4405 \end{aligned}$ | (Engineering Technology) (Engineering) |
| Wisconsin | 6601 | Marquette University |
|  | Milwaukee School of Engineering |  |
|  | $\begin{aligned} & 6602 \\ & 6603 \end{aligned}$ | (Engineering Technology) <br> (Engineering) |
|  | University of Wisconsin |  |
|  | $\begin{aligned} & 6604 \\ & 6605 \\ & 6606 \\ & 6607 \end{aligned}$ | Madison <br> Milwaukee <br> Platteville <br> Stout |
| Wyoming | 7401 | Wyoming, University of |
| Other | 9001 | Other (not listed) |


| Country | Code | School |
| :---: | :---: | :---: |
| Canada | 8001 | Alberta, University of |
|  | 8002 | British Columbia, University of |
|  | 8003 | Calgary, University of |
|  | 8004 | Carleton University |
|  | 8005 | Concordia University |
|  | 8006 | Dalhousie University |
|  | 8007 | Ecole De Technologie Superieure |
|  | 8008 | Guelph, University of |
|  | 8009 | Lakehead University |
|  | 8010 | Laurentian University |
|  | 8011 | Laval, University |
|  | 8012 | Manitoba, University of |
|  | 8013 | McGill University |
|  | 8014 | McMaster University |
|  | 8015 | Memorial University of Newfoundland |
|  | 8016 | Moncton, Universite de |
|  | 8017 | New Brunswick, University of |
|  | 8018 | Ottawa, University of |
|  | 8019 | Polytechnique, Ecole |
|  | 8020 | Quebec A Chicoutimi, Universite du |
|  | 8021 | Quebec A hull, Universite du |
|  | 8022 | Quebec A Rimouski, Universite du |
|  | 8023 | Quebec A Trois-Rivieres, Universite du |
|  | 8024 | Quebec En Abitibi-temiscamingue, Universite du |
|  | 8025 | Queen's University |
|  | 8026 | Regina, University of |
|  | 8027 | Royal Military College of Canada |
|  | 8028 | Ryerson Polytechnical University |
|  | 8029 | Saskatchewan, University of |
|  | 8030 | Sherbrooke, Universite de |
|  | 8031 | Simon Fraser University |
|  | 8032 | Toronto, University of |
|  | 8033 | Victoria, University of |
|  | 8034 | Waterloo, University of |
|  | 8035 | Western Ontario, University of |
|  | 8036 | Windsor, University of |
| Other | 9001 | Other (not listed) |


[^0]:    - Wade, Thomas L., Calculus, Ginn \& Company/Simon \& Schuster Publishers, 1953.

[^1]:    - Crandall, S.H. \& N.C. Dahl, An Introduction to The Mechanics of Solids, McGraw-Hill Book Co., Inc., 1959.

[^2]:    - Timoshenko, S. and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand

[^3]:    - Bober, W. \& R.A. Kenyon, Fluid Mechanics, John Wiley \& Sons, Inc., 1980. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.
    - Vennard, J.K., Elementary Fluid Mechanics, J.K. Vennard, 1954. Diagrams reprinted by permission of John Wiley \& Sons, Inc.

[^4]:    B. Atkinson and F. Mavitona, Biochemical Engineering and Biotechnology Handbook, Macmillan, Inc.,

[^5]:    1. Harris, C.E., M.S. Pritchard, \& M.J. Rabins, Engineering Ethics: Concepts and Cases, Copyright © 1995 by Wadsworth Publishing Company, pages 27-28
[^6]:    - Davis, M.L. and S.J. Masten, Principles of Environmental Engineering and Science, McGraw-Hill, 2004. Used with permission of McGraw-Hill Companies.

[^7]:    ${ }^{a}$ Data in this category taken from: Copeland, T., A. M. Holbrow, J. M. Otan, et al., "Use of probabilistic methods to understand the conservatism in California's approach to assessing health risks posed by air contaminants," Journal of the Air and Waste Management Association, vol. 44, pp. 1399-1413, 1994.
    Risk Assessment Guidance for Superfund. Volume 1, Human Health Evaluation Manual (part A). U.S. Environmental Protection Agency, EPA/540/1-89/002, 1989.

[^8]:    - Williams, P.L., R.C. James, and S.M. Roberts, Principles of Toxicology, 2nd ed., John Wiley \& Sons, 2000.

[^9]:    - Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed., McGraw-Hill, 1991 and McGhee, Terence and E.W. Steel, Water Supply and Sewerage, McGraw-Hill, 1991. *PF = plug flow, $\mathrm{CM}=$ completely mixed .

[^10]:    - Tchobanoglous, G. and Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal, and

[^11]:    * Exposure to impulsive or impact noise should not exceed 140 dB peak sound pressure level.

