

Biodegradability of commercial polymers for skimmed rubber coagulation

Asst.Prof.Dr.Wilairat Cheewasedtham (wilairat.c@psu.ac.th) and

Anchalee Sookluang

Analytical Chemistry and Environment Research Unit (ACERU)
Faculty of Science and Technology,
Prince of Songkla University, Pattani campus

สงวนลิขสิทธิ์ วิไลรัตน์ ชีวะเศรษฐธรรม ม.สงขลานครินทร์

Outlines

Analytical chemistry and environment research unit (ACERU)

1. Introduction:

Why study biodegradability of rubber coagulation polymer?

- 2. Materials & methods: How we did it?
- 3. Results and discussion:

Are these polymer better than sulfuric acid in rubber coagulation?

4. Conclusions: Method for factory to assess polymer before onsite applications

ACE Research Unit

- Analytical Chemistry and Environment Research Unit (ACERU)
- Prince of Songkla University
 - Pattani and Hat Yai campuses
- Invented new analytical methods and waste management technologies including ISO methods.
- Our alliances

Dr.Thitima R.

- ISA, France; CSIRO, Australia
- Latex Industry; Science Park, PSU;
 Instrument center

Asst.Prof.Dr.Chonlatee C.

ACE Research Unit

Example of our ACERU products

TMTD&ZnO test kits

Mg test kit

- WIPO2011 139245
- ISO 17403: 2014

CERTIFICATE OF GRANT OF A PATENT

In accordance with Section 31 (2) of the Patents Act 1983 a patent for an invention having grant number MY-148291-A has been granted to 1) THE THAILAND RESEARCH FUND, 2) PRINCE OF SONGKLA UNIVERSITY, in respect of an invention having the following particulars:

TITLE

: TEST KIT AND METHOD FOR QUANTITATIVE DETERMINATION OF THIURAM COMPOUNDS IN A

SAMPLE

FILING DATE : 24 MARCH 2010

PRIORITY DATE 11 NOVEMBER 2009

NAME OF INVENTOR : CHEEWASEDTHAM, WILAIRAT

PATENT OWNER THE THAILAND RESEARCH FUND 14TH FLOOR, SM TOWER

979/17-21 PHAHOLYOTHIN ROAD SAMSENNAI, PHAYATHAI BANGKOK 10400 THAIL AND

 PRINCE OF SONGKLA UNIVERSITY 15 KANJANAVANICH ROAD, HATYAI SONGKHLA 90110 THAILAND

DATE OF GRANT : 29 MARCH 2013

Dated this 29 gay of MARCH 2013

(SHAMSIAH BINTI KAMARUDDIN) for Registrar of Patents

ACE Research Unit

พรีสนาผสมาภาศไฮโรสิฮร์โบสิสร์สัพร/สมสัตร์ล

- Our outstanding rewards and productivity
 - 2016: The number 1 inventor of PSU whose technology have been most licensed (2005-2015)
 - 2015: Newton fund, Leader in Innovation Fellowship
 - 2005: Outstanding research of Thailand Research
 Fund

- During our new methods for Zn, Mg, etc. determination method have been announcing to latex industry
- Problem of new rubber coagulant polymer has been raised up from the user
- Concentrated H₂SO₄ → Skimmed rubber coagulation
- Coagulant polymer
- Activated sludge process in wastewater treatment was failed
- Polymer toxic to bacteria and protozoa?

- Our ACERU has promised to developed a new method for latex industry for biodegradability (Toxicity) assessment of rubber coagulatant polymer
- SIMPLE
- Fast
- Cheap

- It is complicated if determine several toxic functional groups or compounds
- New polymer types have been continuously produced
- Degradation
 - Photodegradation
 - Biological degradation
- Over all toxicity testing with biological seems proper to this propose

- Mohee et al. (2007)
 - Used both aerobic and anaerobic degradations for commercial plastic
 - Cellulose membrane as control
 - Aerobic fermentation
 - Fermented plastic sheet with food waste for 72 days
 - % wt. loss at 26.9% of dried wt.
 - Anaerobic fermentation
 - Biogas production monitoring
 - 7.6-245 cm³ in 32 days (Very low volume)

- Biodegradable plastics?
 - Aerobic fermentation
 - Anaerobic fermentaion
- Meltem et al. (2007) studied biological degradation of polyurethane foam under anaerobic digestion

Objectives

 To develop a biodegradability assessment method for rubber coagulant polymer

2.1 Skimmed rubber coagulation efficiency

Polymer type	State	Color	
SKP (Songkhla)	Powder	White	
SRP (Surat thani)	Liquid	Yellow	
PLP (Phatthalung)	Liquid	Brown	

3.1 Rubber coagulation efficiency

Concentrated latex + 0.5% wt/wt polymer

- 2.1 Skimmed rubber coagulation efficiency
 - 2.1.1 Coagulation efficiency
- 2.1.2 Skimmed latex, before and after coagulation
 - 1) pH
 - 2) EC
 - 3) COD (Chemical oxygen demand)

2.2 Aerobic fermentation

Fermented materials	g
Fresh vegetables waste	38.5
Dried rain tree leaves	45.3
Office paper waste	3.8
Polymer	
Water to 100 g	

Polymers are in power or liquid state, How?

2.2 Aerobic fermentation

A 2 g Rubber sheet	
	g
Polymer	0.5
Latex concentrate	1.5
Ethanol	15.0

2.2 Aerobic fermentation

%Weight of rubber sheet Before vs after

Left for 25 days at room temp.

2.3 Anaerobic fermentation of polymer

- Very low volume of biogas can be generated if polymer is toxic
- What should be the proper composition of fermentation?
- How can we easily measure the produced biogas?

2.3 Anaerobic fermentation

- Anaerobic fermentation system setting up
 - 2-200 g Polymer : 1 kg of sludge
 - Water

- 2.3 Anaerobic fermentation
- Biogas volume was recorded every 4 days
- □ Day 0, 4, 8, 12, 16, 20, 24

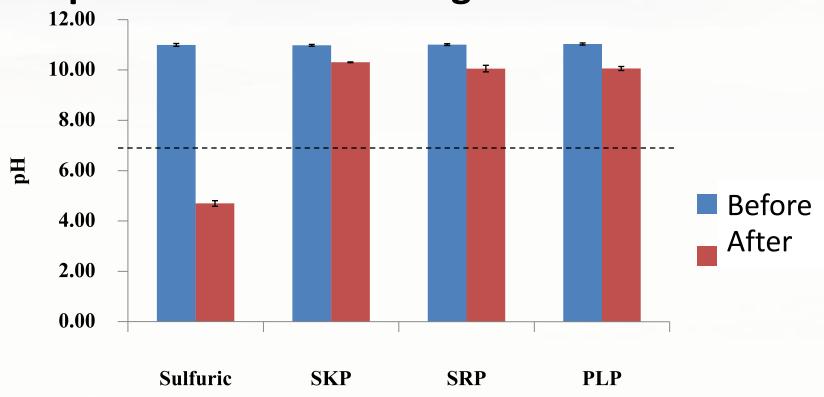
3. Results and discussion

- 3.1 The efficiency of rubber coagulants
- 3.1.1 Coagulation efficiency

H,SO₄

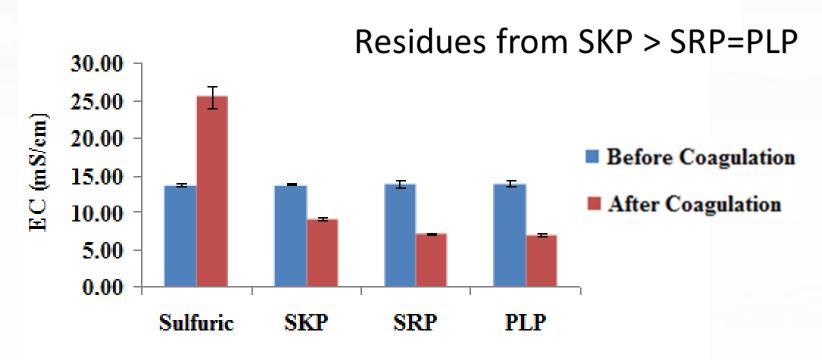
SKP

SRP


PLP

- H₂SO₄: Cheapest, fastest and the most powerful
- Can be utilized by sulfur reducing bacteria
- Polymers: SKP> SRP = PLP

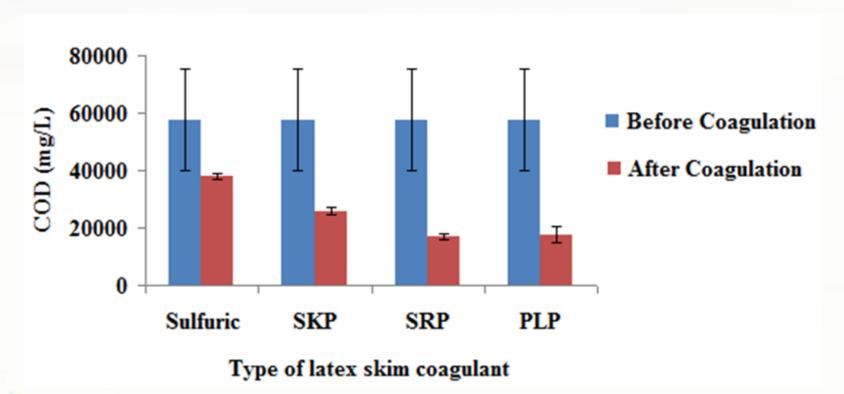
3.1.2 pH of serum after coagulation



Skimmed rubber coagulant types
pH of serum before and after coagulation

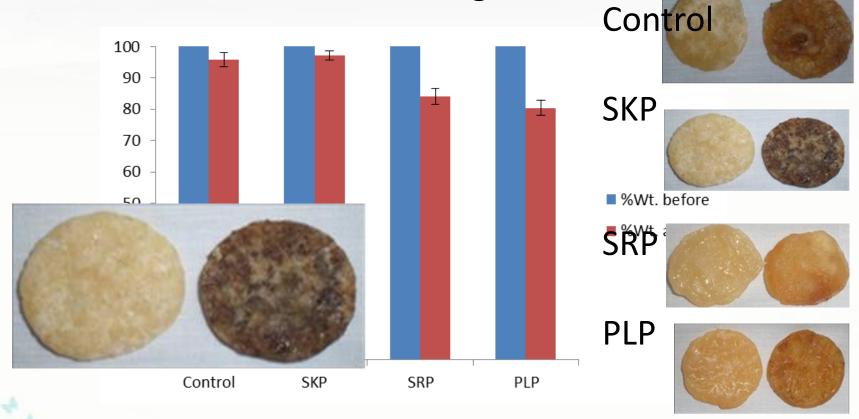
3.1.2 EC of serum after coagulation

Type of latex skim coagulant


EC of serum before and after coagulation

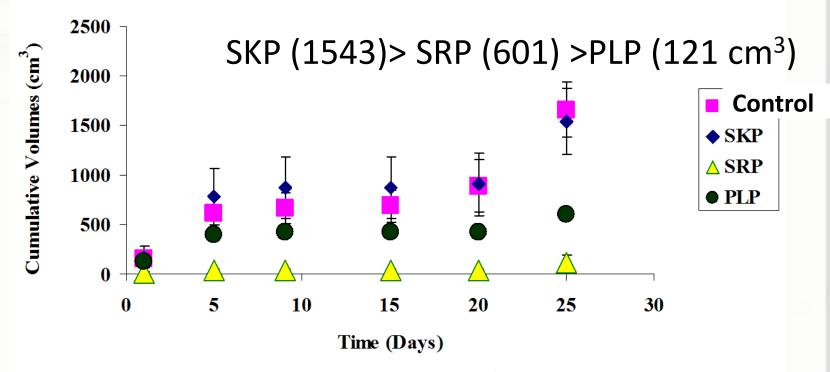
สงวนลิขสิทธิ์ วิไลรัตน์ ชีวะเศรษฐธรรม ม.สงขลานครินทร์

Residues from SKP > SRP=PLP



COD of skimmed serum before and after coagulation

3.2 Aerobic fermentation: % Weight loss


%Weight of rubber sheet before and after fermentation

3. Results and discussion

3.3 Anaerobic fermentation

Accumulated biogas in anaerobic fermentation system with different types of coagulant polymer

4. Conclusion

- Anaerobic fermentation
 - Simpler and more effective method for polymer degradability assessment than aerobic fermentation
 - Biogas can be assessed within 1
 week in comparison with control
 - No need for expensive tool
- The biodegradability assessment should be performed before application of coagulant polymer

Ackhnowledgement

- Prince of Songkla University
- Thailand research fund
- Science Park, PSU

Thank you very much for your attention

Biodegradability of commercial polymers for skimmed rubber coagulation

Asst.Prof.Dr.Wilairat Cheewasedtham and

Anchalee Sookluang

Analytical Chemistry and Environment Research Unit (ACERU)
Faculty of Science and Technology,
Prince of Songkla University, Pattani campus

สงวนลิขสิทธิ์ วิไลรัตน์ ชีวะเศรษฐธรรม ม.สงขลานครินทร์