Feline herpes dermatitis treated with interferon omega

Meret E. Ricklin Gutzwiller*,†, Chiara Brachelente*, Karin Taglingert†, Maja M. Suter‡, Herbert Weissenböck§, and Petra J. Roosje†

†Dermatology Section, Department of Veterinary Medicine, Vetsuisse Faculty, University of Berne, Berne, Switzerland
‡Institute of Animal Pathology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
§Department of Veterinary Medicine, Vetsuisse Faculty, University of Berne, Berne, Switzerland
*Correspondence: Dr M. Ricklin Gutzwiller, Dermatology Section, Department of Veterinary Medicine, Vetsuisse Faculty University of Berne, Berne, Berne, Switzerland
†Dermatology Section, Department of Veterinary Medicine, Vetsuisse Facility, University of Berne, Berne, Switzerland

E-mail: meret.ricklin@kkh.unibe.ch

What is known about the topic of your paper

• A good pathology service is important.
• Make sure that the treatment induced reveals the effect expected.

What your paper adds to the field of veterinary dermatology

• Treatment of feline herpes virus (FHV-1) with feline interferon omega.
• Clinical description of FHV-1 infection causing feline herpes dermatitis (there are not many described).

Abstract

This case report describes the diagnosis, demonstration and treatment of feline herpes virus-induced facial dermatitis in a cat. The cat was successfully treated with interferon omega (IFN-ω).

Accepted 01 September 2006

Introduction

Feline herpes virus type 1 (FHV-1), is a double-stranded DNA virus that replicates in the nucleus of host cells producing intranuclear inclusion bodies. FHV-1 is one of the major causes of feline upper respiratory tract disease. In addition to the classical rhinotracheitis, these viral infections may also induce chronic conjunctivitis and keratitis, chronic sinusitis, glossitis, neonatal disease and abortion. Rarely, cases of ulcerative and crusting dermatitis in cats have been described. In reported cases of feline herpes dermatitis the lesional skin is histologically characterized by a severe eosinophil-rich necrosis and epidermal ulceration with extension of necrosis into hair follicles and underlying dermis. Intranuclear inclusion bodies in the surface epithelia and adnexal epithelia can be found within the lesions. Misdiagnosis as eosinophilic granuloma may occur, if inclusion bodies are missed. Currently, limited information exists on therapy, clinical course, and outcome of feline herpes dermatitis. Thus, the purpose of this case report is to describe a case of feline herpes dermatitis successfully treated with interferon omega (IFN-ω).

Case report

Case history and treatment

A 14-year-old neutered Abyssinian-mix female in- and outdoor cat was presented for dermatological examination of a progressive lesion on the left lateral muzzle. The cat had no health problems except for a 3 years’ duration of hypertrophic cardiomyopathy treated since with 6 mg Atenolol (Tenormin® Submite®, AstraZeneca, Zug, Switzerland) daily. A single episode of vomiting unrelated to the treatment was observed. Three months before referral the cat was presented to the referring veterinarian with an exudative lesion on the left latero-rostral muzzle. There was no previous history of rhinotracheitis and/or conjunctivitis. As the lesion did not respond to either antibiotics or prednisolone, the referring veterinarian took a skin biopsy and submitted it to the dermatopathology service of the Institute of Animal Pathology (Vetsuisse Faculty University of Berne, Berne, Switzerland). Histologically, a diagnosis of eosinophilic granuloma was made. Upon diagnosis, the cat, weighing 3.5 kg, was further treated with oral prednisolone, 5 mg day−1 for 6 weeks and with oral clindamycin (Antirobe®, Pfizer Animal Health, Zürich, Switzerland), 25 mg twice daily for 6 weeks. The lesions did not show any response to therapy. Dermatophyte culture was negative. Two months after the biopsy, the cat developed a new lesion on the right nasal ala. The cat was then referred to the dermatology service. At presentation, the cat had two lesions. The lesion on the left side of the muzzle bordering on the nasal planum and lip margin was 1.5 × 3 cm, firm on palpation with thickening of the lip. The lesion was erythematous, alopecic, had a shiny appearance and had several erosions and small crusts. Some whiskers remained. A second small, ulcerated lesion with a thin crust was present on the right ala of the nose (Fig. 1). The lip margin itself and the oral cavity were not affected. Physical examination revealed no other abnormalities. Treatment with oral cephalaxin 20 mg kg−1 twice daily for 3 weeks was started in order to reduce possible secondary bacterial infection to obtain a good quality biopsy. To limit a possible corticosteroid influence on histology, a recheck was scheduled after 3 weeks to biopsy the lesions. Clinical differential diagnoses consisted of feline herpes dermatitis, mosquito bite hypersensitivity, mast cell tumour, and dermatophytosis. At re-evaluation of the histological sections of the skin biopsies taken by the referring veterinarian, intranuclear inclusion bodies were detected and a presumptive diagnosis of infection.
with FHV-1 was made. During the second visit a conjunc-
tival swab was taken to confirm and assess the actual
FHV-1 status of the cat by polymerase chain reaction
(PCR). Detection limits of PCR techniques vary widely and
they do not discriminate between viable cultivable virions
and immature, immunologically inactivated DNA. For
ethical reasons, the planned skin biopsies were not taken.
PCR for detection of FHV-1 was performed at the Institute
of Virology (Vetsuisse Faculty Zürich, University of Zürich,
Switzerland), following an established protocol for real
time TaqMan PCR, which confirmed the diagnosis of a
FHV-1 infection. After obtaining the owner’s consent and
discussion with a representative of Virbac Switzerland,
the following treatment schedule with recombinant interferon
omega (rFeIFN-ω) (Virbagen omega®, Virbac SA, Carros,
France) was started. Day 0: injection of 1.5 million units
(MU) kg\(^{-1}\) of rFeIFN-ω, half of which was injected perile-
sionally and intradermally and the other half subcutane-
ously on the lateral thorax while the cat was sedated with
propofol (Propofol®1% Fresenius, Fresenius AG, Bad
Homburg, Germany), as needed (2–5 mg kg\(^{-1}\)). The lesion
on the nose regressed very rapidly, showing a clear
improvement at day 2 already.

Day 2 and day 9: 1.5 MU kg\(^{-1}\) of rFeIFN-ω was injected
subcutaneously on the lateral thorax and 10 days later, the
cat was re-examined. The lesion on the right nasal ala had
disappeared completely and the lesion on the muzzle was
less swollen and ulcerations had healed.

On days 19, 21, and 23 again 0.75 MU kg\(^{-1}\) of rFeIFN-ω was injected perilesionally and intradermally as well as
0.75 MU kg\(^{-1}\) subcutaneously on the lateral thorax. The
cat was sedated as described above.

Six weeks after the last injection of rFeIFN-ω examination
revealed that the swelling was markedly reduced, no
crusts or erosions were present and hair regrowth was
noted at the lesion margin. Only a few whiskers had
regrown in the centre of the lesion (Fig. 2).

As the lesion seemed quiescent and to cause minimal
stress to the cat, treatment was not continued. The owner
was instructed to inform the dermatology service of any
changes. Two months after the last examination (e.g. 4
months after the last treatment), the cat presented for the
evaluation of a small crust at the lateral edge of the lesion,
on the muzzle (Fig. 3). The original lesion itself, however,
had decreased in size since the initial presentation. The cat
was in good clinical health and the cardiomyopathy was
well controlled. Biopsies were taken to verify the cause of
the crust and a conjunctival swab was taken for FHV-PCR.
By taking biopsies, the entire crust was removed. At the
moment of writing, 4 months later, the lesion on the muzzle
has further regressed.

**Histological findings, immunohistochemistry and
PCR results**

Histological findings before rFeIFN-ω therapy

The histopathological re-examination of haematoxylin and
eosin-stained sections of the biopsy taken by the referring
veterinarian showed a focal extensive ulceration of the
epidermis, covered by a thick serocellular crust containing
degenerate eosinophils and neutrophils and rare bacterial
colonies. Focally, the necrosis extended into the follicular
infundibulum and into the underlying superficial dermis
(Fig. 4). The necrotic surface and infundibular epithelial

![Figure 1. The cat at first presentation. A plaque-like lesion on the muzzle with alopecia and some erosions and crusts. A small erosive lesion on the right ala of the nose is visible.](image1)

![Figure 2. The lesion 6 weeks after the last rFeIFN-ω injection. Erosions and crusts have disappeared, the lesion is less raised and hairs are regrowing at the margin of the lesion.](image2)

![Figure 3. Skin lesion 2 months after the first presentation. Small crusts are present at the lateral edge of the initial lesion.](image3)
cells had shrunken and had pyknotic nuclei, whereas the adjacent, still viable cells were occasionally swollen.

Infundibular epithelium in one section contained a small group of keratinocytes with round, eosinophilic to amphophilic, intranuclear eosinophilic inclusion bodies (arrow) with a peripheral halo and margination of the nuclear chromatin. Haematoxylin and eosin. Bar = 20 µm.

Histological findings after rFeIFN-ω therapy (biopsy was taken 2 months after the last injection with rFeIFN-ω) On histological examination the epidermis showed a diffuse, moderate, irregular hyperplasia with a mild, compact, orthokeratotic hyperkeratosis. A serocellular crust was present and the underlying epidermis showed multifocal hydropic degeneration of the keratinocytes with spongiosis and lymphocytic exocytosis. Focally the stratum basale and to a lesser extent the stratum spinosum was characterized by increased eosinophilia with a fine fibrillar structure, suggestive of trans-epithelial collagen elimination, intermixed with cellular debris. Scattered apoptotic cells were also found in the basal layer of the entire epidermis. A mild to moderate perivascular to interstitial infiltrate composed of numerous plasma cells and lymphocytes with fewer macrophages and mast cells and rare eosinophils and neutrophils was present in the superficial dermis. Occasionally, the inflammatory infiltrate was centred around hair follicles. The wall of the infundibular portion of a few hair follicles was infiltrated by a small number of lymphocytes. A focal accumulation of epithelioid macrophages with rare giant cells was found surrounding the fragments of birefringent foreign material. Inclusion bodies were not observed and therefore these histological findings did not suggest an active herpes infection.

PCR results
PCR for FHV of a conjunctival swab was positive at first presentation and negative after rFeIFN-ω therapy. PCR for FHV using skin tissue was only performed on skin after rFeIFN-ω therapy and the result was positive. There was not sufficient material left of the first skin biopsy to perform PCR analysis.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on skin before and after the rFeIFN-ω therapy. A monoclonal anti-FHV-1 antibody (type 4A1 R) was used according to the method described by Suchy et al.6 This antibody specifically stains viral protein appearing in nuclei as well as in cytoplasm. A skin sample from the case presented in the mentioned paper served as positive control. Numerous foci of positive cells were present in the biopsy taken prior to the rFeIFN-ω therapy (Fig. 6). IHC of skin biopsies taken after treatment was negative (Fig. 7).

Discussion
In this case report, a cat diagnosed with herpes virus-induced facial dermatitis was successfully treated with IFN-ω. Reports on treatment and prognosis of feline herpes dermatitis are lacking. Cats with herpes dermatitis have been managed with antibiotics and oral human IFN-ω, surgical excision and acyclovir.1,7,8 Acyclovir, however, is known to have a relatively poor in vitro efficacy against FHV-112 and a poor bioavailability in cats.13 Oral supplementation with L-lysine has been shown to be effective in vitro and in vivo in cats with latent infections with FHV-1.14 The presumed mechanism is based on the known antagonism of the growth-promoting effects of arginine, which is an essential amino acid for herpes simplex virus type 1 (HSV-1) of humans, which shows a comparable biological behaviour to FHV-1.15,16 Oral administration of human
IFN-ω has been reported in several studies in cats with FeLV infection showing different efficacies.\(^{17–19}\) Recombinant feline IFN-ω (rFeIFN-ω) is a type I IFN and has a similar mode of action as IFN-α. Type I IFNs bind to α/β receptors on host cells and have multiple antiviral, anti-proliferative and immunomodulatory activities.\(^{20}\) IFNs can inhibit cell growth and thereby prevent replication of some viruses. IFNs induce apoptosis in virus-infected cells and enhance expression of major histocompatibility complex (MHC) class I proteins and thereby promote CD8+ T-cell responses and stimulate cytotoxicity of natural killer cells.\(^{21}\) IFN also induces a form of nitric oxide synthase (iNOS) and MHC class I and II proteins, all of which play important roles in immune responses to infections.\(^{21}\) rFeIFN-ω has a dose-dependent inhibitory effect on the replication of FHV-1 \textit{in vitro}.\(^{22}\) Other studies have shown an antiviral effect of rFeIFN-ω in the treatment of herpes keratitis,\(^ {23,24} \) FeLV and FIV infection,\(^ {25} \) canine paroviral ententitis\(^ {26–28} \) and gingivo-stomatitis.\(^ {29} \) rFeIFN-ω showed efficacy \textit{in vitro} against canine parovirus, feline panleuко- peniavirus, FHV-1, feline calicivirus and feline coronavirus.\(^ {30} \) The treatment schedule was chosen after discussion with the manufacturer and was based on experience with treatment of other diseases using rFeIFN-ω such as feline infectious peritonitis and feline calicivirus infection. Generally, rFeIFN-ω is injected subcutaneously on days 0, 2 and 4 and a second series is repeated after 1–2 weeks. Because the cat showed marked improvement after the perilesional injection, suggesting a strong local effect of the IFN, the perilesional area was chosen for the second treatment course.

Feline herpes virus is considered to be a rare cause of ulcerative and crusting facial dermatitis in cats. However, when the often rare viral inclusions are overlooked, the histological changes can be easily misdiagnosed as eosinophilic plaque, mosquito bite hypersensitivity and eosinophilic ulcer.\(^ {9} \) At present, limited information exists on the natural course of herpes dermatitis in cats and the influence of corticosteroids. This cat had received corticosteroids after developing the lesion, which may have delayed spontaneous healing. In theory, cessation of the corticosteroids may have influenced spontaneous regression of the lesion. However, the marked quick initial response to rFeIFN-ω therapy, combined with the results of the histology, IHC and PCR analysis, strongly suggests a direct or at least additional treatment effect.

PCR for FHV-1 of skin tissue remained positive after the treatment. However, the clinical relevance of this finding is not clear. Potentially, PCR is a more sensitive method to detect FHV compared to IHC, which was shown in humans with herpes simplex virus (HSV)-1.\(^ {31} \) However, Weigler and coworkers showed that after replication at sites of initial inoculation, FHV retracts along the facial nerves and establishes latent infections in trigeminal ganglia, optic nerves, optic chiasma, the olfactory bulb and cornea, but is not expected to remain in the skin.\(^ {32} \) In cats with disease, detection of virus may indicate coincidence, consequential infection, or true causation with respect to the primary disease. Viral DNA detected by PCR assays in samples of healthy cats may represent avirulent virus or viral DNA fragments remaining after resolution of infection.\(^ {10} \)

The finding of trans-epidermal collagen elimination was unexpected. Treatment of the trans-epidermal collagen elimination with halofuginone was discussed. Halofuginone is a collagen alpha 1 inhibitor\(^ {33} \) and was shown to be effective as a topical treatment of one cat diagnosed with reactive perforating collagenosis.\(^ {34} \) Unfortunately, halofuginone is not available in Switzerland, and as the cat did not develop new lesions, this type of treatment was not pursued.

In conclusion, this case report illustrates that a correct histological diagnosis is essential for the treatment of feline herpes dermatitis and that treatment with rFeIFN-ω can be a safe and efficacious therapy. Further investigations into the treatment protocol and its efficacy are warranted.

Acknowledgements

We thank the referring veterinarian Dr Corinne Ritter for her cooperation with this case. We appreciate the financial support of the treatment from Virbac, Switzerland. We are grateful to Mrs Ursula Forster and Miss Nora Nedorost for excellent technical assistance.
References

Résumé Ce cas clinique décrit le diagnostic, la mise en évidence et le traitement d’une dermatite faciale à herpes virus chez un chat en utilisant l’interféron oméga (IFN-ω).

Resumen Este artículo describe el diagnóstico, demostración y tratamiento de la dermatitis facial felina producida por la infección con herpes virus en un gato. El gato se trato con éxito con interferón omega (IFN-ω).

Zusammenfassung Dieser Fallbericht beschreibt die Diagnose, Demonstration und die Behandlung einer feline Herpesvirus-induzierten Dermatitis des Gesichts bei einer Katze. Die Katze wurde erfolgreich mit Interferon Omega (IFN-ω) behandelt.